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Chapter 1

Introduction and Preliminaries

1.1 Introduction

The thesis aims to investigate some problems related to superintuitionistic proposi-
tional intermediate logics, that is, sets of propositional formulas closed with respect
to modus ponens and substitutions (of propositional variables with formulas) that
lie between the (propositional) logic Int and the (propositional) classical logic Cl.
There is a continuum of such logics L, and we can characterize them by syntactical
or semantical tools. In the former case, we give a sequence of formulas (axioms)
from which, by means of an effective set of rules, we can derive all the formulas of
L; in the latter case, we provide a semantics in which the valid formulas are exactly
those in L. The most popular semantics for intermediate logics are the algebraic
semantics and the Kripke frames semantics. Algebraic semantics has a privilegiated
role, since every intermediate logic L admits an algebraic semantic characterization.
Kripke semantics was firstly introduced in the study of modal systems and succes-
sively it was revealed a good tool in describing intermediate logics. Indeed, it seems
to be very manageable and very suitable to treat many important theoretical prob-
lems which arise in logic (such as the problems faced in the thesis). A drawback
is that, differently from algebraic semantics, not all the intermediate logics can be
characterized by kripkean semantics, and in literature some examples of such logics
are presented (see for instance [31, 32]). Nevertheless, many interesting logics, such
as the ones presented in the thesis (see Chapter 2), can be described by frames
semantics (we recall however that these remarks do not hold for predicate logics,
where the use of kripkean semantics is rather problematic and many incompleteness
phenomena arise). This relationship between modal logics and intermediate logics
is not casual, since there is a deep analogy between them; indeed the main notions
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2 Chapter 1. INTRODUCTION AND PRELIMINARIES

concerning intermediate logics actually derives from modal logics. One can observe
that some central notions, such as completeness, strong completeness, canonicity,
are well established in the literature of modal logics (see for instance [6]). This
also suggests that many ideas and results of our research (for instance, the criteria
for canonicity and strong completeness) can be translated in the modal framework
without great effort.

In this thesis we confine ourselves to treat intermediate propositional logics and
our reference semantics is the kripkean one, hence we begin by recalling what we
mean by Kripke frame semantics. A Kripke frame is a partial order, that is a set
of points (states of the frame) equipped with a partial ordering relation; a Kripke
model is obtained by defining an interpretation of the language (more precisely,
of the propositional variables of the language) on a frame. When all the models
K based on a frame P are model of L (i.e., all the formulas of L are valid in all
the points of K), we say that P is a frame for L. Given a nonempty class F of
frames, the set of formulas L (F ) valid in all models based on the frames of F is
actually an intermediate logic (for a precise definition of these notions see Chapter 1
or the textbook [4], which is the main reference as regards the general notions about
intermediate logics).

A major concern in logic is the relationship between the syntactical apparatus of
a logic and its semantical counterpart. This is the well known completeness problem
which can be stated in the following terms: given a logic L, is there a class of frames
F such that L (F ) = L? A stronger notion is that of strong completeness which
concerns the relationship between the syntactical notion of “derivability in L of a
set of formulas ∆ from a set of formulas Γ” (Γ ⊢L ∆) and the semantic notion of
“logical consequence of ∆ from Γ, with respect to the class F of all frames for L”
(Γ |=F ∆). In this case, the question is: is it true that Γ ⊢L ∆ iff Γ |=F ∆? As
it happens for modal logics, in some cases the proof of strong completeness of a
logic can be carried out by means of simple tools; this happens, for instance, for
canonical logics. We recall that the canonical model of a logic L is, in some sense,
the biggest model of L, since it contains all the saturated sets (that is, consistent
sets of formulas which satisfy some closure properties) which include L. When the
frame of the canonical model is a frame for L, we say that L is canonical; as an
immediate consequence of the definition, one gets that canonical logics are complete
and even strongly complete and this justifies the relevance of this notion. In this
connection, we recall a difficult open question: does the class of canonical logics
coincide with the class of strongly complete logics? As far as we know, there are
not convincing arguments in favour of either option, we also think that the tools
developed in the thesis are not useful to solve the question (as a matter of fact,
every time we find a counterexample to show that a logic L is not canonical, we
are able, with slight modifications, to disprove even the non strong completeness of
L). The proof of canonicity consists in checking that the canonical model satisfies
certain properties; in general, such a proof is carried out by ad hoc arguments which
depend on the logic in hand. One can also observe that such proofs have not the same
structure: sometimes the proof goes very smoothly, since only elementary properties
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of canonical models are used; in other cases the proof is more involved, since strong
properties of canonical models (such as the fullness) must be used. A merit of [15]
is to introduce a classification of canonicity which takes into account these different
patterns involved in canonicity proofs, distinguishing some degrees of canonicity and
also stating some criteria for classifying the logics. This approach is quite original
in literature, since it is a first contribute devoted to treat in a systematic way these
central notions, and this is the starting point of our research. First of all, we propose
and refine the classification of canonicity: we single out, as the simplest case, the
hypercanonicity (distinguishing three subcases) and the extensive canonicity, while
we consider non elementary the other cases of canonicity (see Chapter 3 for such a
refined classification, where many examples are presented to separate these various
subcases of canonicity). Then (Chapter 4), integrating [15], we state criteria for
hypercanonicity, extensive canonicity and strong completeness. Even if our criteria
are formally similar to the ones in [15], the techniques and the arguments we use are
different: while in the quoted paper the authors use algebraic-categorical tools, we
directly act on kripkean semantics, using techniques more inspired to the classical
Model Theory. The most interesting application of these results is to the class of
logics in one variables, that is, superintuitionistic logics having as extra axiom a
formula containing only one propositional variable. This family of logics is well
studied and characterized in literature. Nishimura first [30] introduced an effective
enumeration of non intuitionistically equivalent formulas Fn in one variable; the
logics in one variable are then obtained by adding to Int any formula Fn when it
makes sense (that is, Fn is classically valid) and taking care into the cases in which
different formulas yield the same logic. The first careful analysis of such logics is
given by Anderson in [1], where the problem of disjunction property is also treated
(for more details, see [3, 4]). Further, an important result has been obtained by
Sobolev in [34], who has shown that all the logics in one variable have the finite
model property, hence they are decidable and admit a semantics in terms of Kripke
frames (see also Chapter 2). As regards the classification of these logics with respect
to strong completeness, it is not difficult to show that four of them are canonical
(hence strongly complete). In [15] appeared the first significative and systematic
result and it is proved that:

• All the logic axiomatized by axioms in one variable, except four of them, are
not canonical.

We observe that, before this paper, the only known result was the non canonicity of
the Scott logic St ([33]). We point out that these results are not trivial, since one has
to deal with “very big” countermodels. While there is not any difficulty in treating
with finite models (see Chapter 1), many problems may arise with the infinite ones.
The ideas beyond these criteria is to overcome these troubles by building an infinite
model as a sort of limit of an infinite sequence (chain) of finite models, in such a
way that, passing from the finite models of the chain to the infinite limit, many
properties are preserved. Here, we propose an improvement of the previous result,
taking also into account the logics in one variable in finite slices. More precisely,
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let us denote with Ln the nth logic in one variable of our enumeration, and let us
denote with Ln,h the logic characterized by the frames of Ln with depth at most h
(note that Ln is properly contained in Ln,h). Then, we show that:

• For each n such that Ln is not strongly complete, there is h such that:

- Ln,j is canonical for j ≤ h;

- Ln,j is not strongly complete for j > h.

The only exception is the case of the Anti-Scott logic Ast([9]); indeed, even if such
a logic is not strongly complete, all its finite slices are canonical (the proof of this
fact is not trivial). We also give other minor applications of these criteria to the well
known Medvedev logic ([26, 27]) and to the so called logic of rhombuses ([23]). This
concludes our systematic exposition about canonicity and strong completeness.

Even if a logic L is not canonical, one can state the completeness of L by showing
that L satisfies a property weaker than canonicity, called ω-canonicity (or weak
canonicity). We remark that for logics which are not even ω-canonical the use of
sophisticated tools, such as filtration techniques, becomes unavoidable. Incidentally,
we point out that filtration techniques are in general mandatory if one wants to prove
stronger properties of a logic, such as the finite model property (closely related to
the decidability of a logic); however, in the thesis we will not treat this subject.

The notions of ω-canonicity, extensive ω-canonicity, strong ω-canonicity derive
from a weakening of the corresponding definitions explained above (in practice, we
consider only languages LV generated by finite sets of propositional variables V ).
As one expects, strong completeness implies strong ω-completeness (and the same
holds for the other notions), while the converse is not true, as it will be shown by
many examples. Similarly, the ω-canonical model with respect to some logic L and
to some finite set V is defined as the canonical model of L, where we identify the
points which cannot be distinguished by formulas of LV . The ω-canonical models
satisfy some interesting properties: they have finitely many final points (while the
canonical models may have uncountable many final points) and they have a sort of
“filter property”. More precisely, if a point α has infinite depth, then there is a point
β such that β has infinite depth and, for all δ > β, δ has finite depth (in particular,
β has no immediate successors); moreover, for every δ1, δ2 > β, there is γ such that
β < γ, γ < δ1 and γ < δ2, that is, β behaves as a filter. A report of these properties
(which are not trivial and are unpublished) can be found in Appendix A. Owing to
these nice properties, in general the proof of completeness is easier if one start from
an ω-canonical model (and in some cases one can also immediately prove the finite
model property).

The most original part of the thesis is the one regarding the study of these weak
notions, which are scarcely investigated in literature. The methods here developed
(see Chapter 5) are completely original and are different (and perhaps more powerful)
from the ones explained in [15]. These ideas are quite new in literature and, as far
as we know, no examples of non strongly ω-complete logics were known. In [15] it
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is showed that all the Gabbay de-Jongh logics (see [13] and see Chapter 2, where
are called logics of finite branching) are not strongly ω-complete. The tools used
in the proof essentially derive from a relativisation of the techniques developed for
canonicity. Here we follow a different approach. Indeed, instead of using sequences
of models to built our (very complex!) counterexamples, we directly define this big
models, and then we check that they satisfy the properties we need. This requires
the introduction of new notions, such as the ones of V -grade (of a point of an ω-
canonical model), of V -sequence of points, of limit of a V -sequence; these notions
naturally yield to the formulation of necessary and sufficient conditions for the (well)
V -separability and the V -fullness of models. In general, these tools allow to be more
loose in the definition of countermodels, if compared with the method of the chains,
where many constraints are imposed.

The main application regards the logics in one variable: indeed, we considerably
improve the above result and we show that:

• All the logics axiomatized by formulas in one variable, except eight of them,
are not strongly ω-complete.

This is perhaps the most important result of the thesis since it is a definitive result
about the classification of such a family of logics.

The thesis is organized as follows. In Chapter 1 we introduce the basic notions,
while in Chapter 2 we present some intermediate logics. In Chapter 3 we begin
the analysis of the main notions investigated in the thesis, namely canonicity, ex-
tensive canonicity, strong completeness, ω-canonicity, extensive ω-canonicity, strong
ω-completeness and other related ones. A careful analysis of these concepts is de-
veloped, with many examples. In Chapter 4 some original techniques for the study
of canonicity, extensive canonicity and strong completeness of intermediate logics
are presented; it is also proposed a refined classification of the logics axiomatized by
formulas in one variable. Other applications are given for the Medvedev logic and
the logic of rhombuses. Chapter 5 is the most original part of the thesis. Here we
develop some techniques for the analysis of ω-canonicity, extensive ω-canonicity and
strong ω-completeness. As an application, it is proved the above mentioned result
about the logics with extra axiom in one variable. Appendix A contains a deeper
study of ω-canonicity; in particular, some interesting (and non trivial) properties
of ω-canonical models are proved. Appendix B summarizes the main results of the
thesis.

1.2 Preliminary definitions

As usual, a (Kripke) frame is a pair P = 〈P,≤〉 consisting of a nonempty set P and
a partial order ≤ on P , i.e., P is a partially ordered set (poset). The elements of
P are called the points of the frame P and α ≤ β is read as “β is accessible from
α” or “α sees β”. We write α < β to mean that α ≤ β and α 6= β; we also use the
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notations β ≥ α and β > α as a synonymous of α ≤ β and α < β respectively. A
subframe of P is a frame P ′ = 〈P ′,≤′〉 obtained by considering a subset P ′ of P and
the restriction ≤′ of ≤ to P ′; the subframe is said to be a generated subframe iff P ′

is upward closed. If α is a point of P , the cone Pα of P is the generated subframe
of P obtained by considering α and all the points accessible from α.

A point β is an immediate successor of α if α < β and, for all points γ of P such
that α ≤ γ ≤ β, we have either γ = α or γ = β.

A final point of a frame P = 〈P,≤〉 is a maximal point of P ; Fin(α) denotes the set
of all the final points accessible from α. We say that P has enough final points iff, for
every α ∈ P , Fin(α) 6= ∅. We say that α has depth n (and we write depth(α) = n)
if n is the maximum length of a chain of points starting from α (namely, there is a
sequence of n points of P α1 ≡ α < α2 < · · · < αn and any other sequence of this
kind contains at most n points). Clearly, a final point has depth 1. The depth of a
frame P is the maximum between the depths of the points of P .

We use the notation P = 〈P,≤, ρ〉 to indicate a frame P with root ρ, where as usual
the root is the minimal point of P ; in this case, we say that P is a rooted frame.

In the sequel, we will assume to fix a propositional language LV , containing the
propositional connectives ∧,∨,→,¬ and a countable set of propositional variables
V . The formulas of LV are defined in the usual way. Given a formula A, Var(A)
denotes the (finite) set of propositional variables occurring in A. If Var(A) ⊆ V ,
where V is a set of propositional variables such that V ⊆ V , we say that A is a
V -formula.

A substitution σ is a map from V to the formulas of LV ; σA denotes the formula
obtained by replacing every propositional variable p occurring in A with the formula
σp.

Let P = 〈P,≤〉 be a frame; a Kripke model K = 〈P,≤,
〉 is obtained by defining a
forcing relation 
 between any point α of P and any propositional variable p of V ,
in such a way that:

α 
 p and α ≤ β =⇒ β 
 p.

The notation “α 
 p” (α forces p) means that the pair 〈α, p〉 belongs to the forcing
relation; if this is not true, we say that “α 6
 p”. When K = 〈P,≤,
〉, we say that
K is based on the frame P = 〈P,≤〉 and that P is the (underlying) frame of K.
The forcing relation is extended to all the formulas of LV in the usual way. More
precisely, let P = 〈P,≤〉 be a frame and let us suppose that the forcing relation 


has been already defined on the propositional variables; then we define the relation
α 
 A, for every α ∈ P and every formula A of LV , inductively on the structure of
A, as follows:

- A = B ∧ C, and α 
 B and α 
 C;

- A = B ∨ C, and either α 
 B or α 
 C;

- A = B→C, and, for every β ∈ P , if α ≤ β and β 
 B, then β 
 C;
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- A = ¬B, and, for every β ∈ P , if α ≤ β then β 6
 B.

It is not difficult to prove that the above conservation property of the forcing holds
for all the formulas A of LV , that is:

α 
 A and α ≤ β =⇒ β 
 A.

Submodels, generated submodels and cones of models are defined similarly to sub-
frames, generated subframes and cones of frames.
Given a model K = 〈P,≤,
〉 and α ∈ P , ΓK(α) (or simply Γ(α) if the context
is clear) denotes the set of the formulas forced in α. If V is a set of propositional
variables, ΓV

K(α) (or simply ΓV (α) if the context is clear) denotes the set of V -
formulas forced in α.
We say that a formula A is valid in K (and we write K |= A) iff α 
 A for all α ∈ P ;
we say that a set of formulas ∆ is valid in K (and we write K |= ∆) iff K |= A for
every A ∈ ∆. In this case we also say that K is a model of ∆.
We say that a formula A is valid in a frame P (and we write P |= A) iff K |= A for
every Kripke model K based on P ; P |= ∆ iff P |= A for every A ∈ ∆.
Let Γ and ∆ be two sets of formulas and let F be a class of frames. We say that ∆ is
a consequence of Γ w.r.t. F , and we write Γ |=F ∆, iff, for all models K = 〈P,≤,
〉
based on the frames of F and all α ∈ P , it holds that:

α 
 A for all A ∈ Γ =⇒ α 
 B for some B ∈ ∆.

1.3 Intermediate logics

We denote with Int and Cl the propositional intuitionistic logic and the propositional
classical logic respectively. An intermediate propositional logic L in the language LV

is any set L of formulas of the language LV satisfying the conditions:

- Int ⊆ L ⊆ Cl;

- L is closed under modus ponens;

- L is closed under substitutions (i.e., A ∈ L implies σA ∈ L, for every substi-
tution σ).

Given a set V of propositional variables (contained in the set V ), LV denotes the
set of V -formulas of L (note that LV satisfies all the properties of an intermediate
logic with respect to the restricted language LV ).
Given two sets of formulas Γ and ∆, with Γ ⊢L ∆ we mean that there are some
formulasA1, . . . , An in Γ andB1, . . . , Bm in ∆ such that A1∧· · ·∧An→B1∨· · ·∨Bm ∈
L; ⊢L A means A ∈ L.
In the sequel, we will adopt essentially two ways to define intermediate logics. Let
∆ be any set of formulas such that ∆ ⊆ Cl; then Int + ∆ denotes the intermediate
logic L which coincides with the closure of the set of formulas Int ∪ ∆ with respect



8 Chapter 1. INTRODUCTION AND PRELIMINARIES

to modus ponens and substitutions. The formulas in ∆ are called additional or extra
axioms of L (over Int). If ∆ = {A1, . . . , An}, we write also Int + A1 + · · · + An

instead of Int + ∆. If a logic L can be represented as Int + ∆ with ∆ finite, we
say that L is finitely axiomatizable. Given any two intermediate logics L1 and L2,
L1 + L2 denotes the union of L1 with L2, which is the smallest intermediate logic
including both L1 and L2.

From a semantical viewpoint, we can define an intermediate logic starting from a
nonempty class of frames F . As a matter of fact, let us consider the set:

L (F ) = {A : for all P = 〈P,≤〉 ∈ F , P |= A}.

Then, it is well known that L (F ) is an intermediate propositional logic; we call it
the logic of F .
A logic L is said to be characterized (or described) by a class of frames F if it holds
that L = L (F ). If P = 〈P,≤〉 is a frame for a logic L, then any proper generated
subframe of P is a frame for L; we show that, in some cases, also the converse holds.
Let α ∈ P and let Pα be the cone of P generated by α; we say that Pα has the filter
property iff, for every β, γ ∈ P , it holds that:

α < β ∧ α < γ =⇒ ∃δ(α < δ ∧ δ < β ∧ δ < γ).

If α is the root of P , we say that P has the filter property.

1.3.1 Proposition Let L be an intermediate logic, let P = 〈P,≤, ρ〉 be a frame
which has the filter property and suppose that every proper cone of P is a frame for
L. Then P is a frame for L.

Proof: Suppose, by absurd, that P is not a frame for L; then there is a Kripke
model K = 〈P,≤, ρ,
〉 based on P and a formula H ∈ L such that ρ 6
 H. We
prove the following fact:

(†) There is a model K ′ = 〈P,≤, ρ,
′〉 based on P and α∗ ∈ P such that ρ < α∗

and α∗ 6
′ H.

Let Sf(H) be the set of all the subformulas of H and let us define a relation ≡H

between the points δ, δ′ of P in the following way:

δ ≡H δ′ if and only if, for every A ∈ Sf(H), δ 
 A iff δ′ 
 A.

It is immediate to see that ≡H is an equivalence relation having finitely many equiv-
alence classes; moreover, if α > ρ, then α 
 H (indeed, by the hypothesis of the
proposition, the cone Pα is a frame for L), hence α 6≡H ρ. It follows that we can
define a set S = {α1, . . . , αn} such that:

(i) ρ < α1, . . . , ρ < αn;

(ii) For every δ > ρ there is δ′ ∈ S such that δ ≡H δ′.
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Since S is finite and P has the filter property, there exists a point α∗ ∈ P such that
α∗ > ρ and, for every δ ∈ S , α∗ < δ. Thus, we can define a model K ′ = 〈P,≤,
′〉
based on P , where the forcing relation 
′ satisfies the following conditions, for every
propositional variable p:

- for every δ > α∗, δ 
′ p iff δ 
 p;

- α∗ 
′ p iff ρ 
 p.

It is immediately verified that:

(A) For every δ > α∗ and every formula A, δ 
′ A iff δ 
 A.

From this fact, we can prove, by induction on the complexity of A, that:

(B) For every A ∈ Sf(H), α∗ 
′ A iff ρ 
 A.

The cases A atomic, A = B ∧ C, A = B ∨ C are immediate.
Let A = B → C. If α∗ 6
′ B → C, it easily follows, by (A) and by the induction
hypothesis, that ρ 6
 B→C.
Suppose now that ρ 6
 B→C. Then there is a point δ such that α ≤ δ, δ 
 B and
δ 6
 C. If δ coincides with ρ then, being B,C ∈ Sf(H), by the induction hypothesis
it follows that α∗ 
′ B and α∗ 6
′ C, hence α∗ 6
′ B→C. If δ > ρ, by (ii) there is
1 ≤ k ≤ n such that δ ≡H αk. This implies that αk 
 B and αk 6
 C, thus, by (i)
and (A), αk 
′ B and αk 6
′ C, hence α∗ 6
′ B→C and (B) is completely proved.
By (B) and by the fact that ρ 6
 H and H ∈ Sf(H), we get that α∗ 6
′ H, thus (†) is
proved. By (†), the proper cone Pα∗ of P is not a frame for L, in contradiction with
the hypothesis of the proposition. We can conclude that P is a frame for L. ✷

1.4 Special sets of formulas

A set of formulas ∆ is a L -saturated set (in the language LV ) if and only if:

(1) ∆ is consistent;

(2) ∆ ⊢L A (where A ∈ LV ) implies A ∈ ∆;

(3) A ∨B ∈ ∆ implies either A ∈ ∆ or B ∈ ∆.

If L is omitted, it is understood that ∆ is an Int-saturated set. We remark that
in (1) consistent means that it is not the case that, for some formula A, ∆ ⊢L A

and ∆ ⊢L ¬A; it is well known that such a condition is equivalent to say that
∆ 6⊢CL A ∧ ¬A. From (2), it follows that L ⊆ ∆.
The definition of L, V -saturated set is the relativisation of the definition of saturated
set with respect to V -formulas; namely, we take into account only the formulas of
the language LV . Note that the set of V -formulas of a L-saturated set ∆ is a
L, V -saturated set.
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We say that ∆ is a maximal consistent set if ∆ is consistent and, for all formulas
A, either A ∈ ∆ or ¬A ∈ ∆ (which is the same as saying that every ∆′ ⊃ ∆ is not
consistent). One can prove that ∆ is a maximal consistent set iff ∆ is a Cl-saturated
set.

We remark that, given a model K and a point α of K, ΓK(α) is a saturated set
and ΓV

K(α) is a V -saturated set; moreover, if α is a final point of K, then both

ΓK(α) and ΓV
K(α) (with respect to V -formulas) are maximal consistent sets. We

say that a saturated set ∆ is realized in K if ∆ = ΓK(α) for some point α of K
(similar definition for V -saturated sets). We now recall an important lemma about
saturated sets (see [4]).

1.4.1 Lemma (Inclusion-exclusion Lemma)
Let L be an intermediate logic and let Γ and ∆ be two sets of formulas such that
Γ 6⊢L ∆. Then there is a L-saturated set Γ∗ such that Γ ⊆ Γ∗ and Γ∗ ∩ ∆ = ∅. ✷

1.5 Some notions of completeness

Now we introduce the main notions of the thesis, which refer to the relationships
between the syntactical and the semantical aspects of a logic.

Let L be any intermediate propositional logic; a frame P = 〈P,≤〉 is said to be a
frame for L if P |= L; Fr(L) denotes the class of the frames for L. Note that Fr(L)
is always nonempty, since it contains at least the frame with only one point, which
gives rise to classical models.

The following fact immediately follows from the previous definitions.

1.5.1 Proposition Let L be any intermediate logic, let Γ and ∆ be any two sets
of formulas. Then:

(i) L ⊆ L (Fr(L)).

(ii) Γ ⊢L ∆ implies Γ |=Fr(L) ∆.

✷

The converse needs not to be true, so the following definitions of completeness are
justified (see also [15]).

1.5.2 Definition Let L be any intermediate logic. Then:

(a) L is complete (or has Kripke semantics) iff L = L (Fr(L)).

(b) L is strongly complete iff, for any two sets of formulas Γ and ∆, it holds that:

Γ ⊢L ∆ ⇐⇒ Γ |=Fr(L) ∆.
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(c) L is strongly ω-complete iff, for every finite set of propositional variables V , for
any two sets of V -formulas ΓV and ∆V , it holds that:

ΓV ⊢L ∆V ⇐⇒ ΓV |=Fr(L) ∆V .

✷

In the sequel, we will also refer to these equivalent formulations of the previous
definitions.

1.5.3 Proposition Let L be any intermediate logic.

(i) L has Kripke semantics if and only if, for every formula A, it holds that:

⊢L A ⇐⇒ |=Fr(L) A.

(ii) L has Kripke semantics if and only if L is characterized by some nonempty
class of frames.

(iii) L is strongly complete if and only if every L-saturated set ∆ is realized in some
Kripke model based on a frame for L.

(iv) L is strongly ω-complete if and only if, for every finite V , every L, V -saturated
set ∆V is realized in some Kripke model based on a frame for L.

Proof:
(i) Suppose that |=Fr(L) A and 6⊢L A (recall that ⊢L A implies |=Fr(L) A). Then
A ∈ L (Fr(L)) and A 6∈ L, that is L 6= L (Fr(L)), hence L has not Kripke semantics.
Suppose now that L has not Kripke semantics. Then there is a formula A such that
A ∈ L (Fr(L)) and A 6∈ L, hence |=Fr(L) A and 6⊢L A.
(ii) If L = L (Fr(L)) then L is trivially characterized by the nonempty class of
frames Fr(L). Conversely, let us assume that L = L (F ). Clearly F ⊆ Fr(L),
which implies that L (Fr(L)) ⊆ L (F ), hence L (Fr(L)) = L.
(iii) Suppose that L is strongly complete and that, by absurd, there is some L-
saturated set ∆ which is not realized in any model K based on a frame for L. Then,
if ∆c is the complement of ∆ (i.e. the set of the formulas of LV not belonging to
∆), we have:

∆ |=Fr(L) ∆c.

Indeed, if K is any model based on a frame for L and α is any point of K which
forces all the formulas of ∆, we must have ∆ ⊂ ΓK(α), where the inclusion is proper;
this means that α 
 A for some A 6∈ ∆. Since L is strongly complete, it follows that
∆ ⊢L ∆c. Hence there are some formulas A1, . . . , An in ∆ and B1, . . . , Bm in ∆c

such that ⊢L A1 ∧ · · · ∧ An→B1 ∨ · · · ∨ Bm. This implies that B1 ∨ · · · ∨ Bm ∈ ∆,
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thus Bk ∈ ∆ for some 1 ≤ k ≤ m, which is absurd, since Bk ∈ ∆c and ∆ ∩ ∆c = ∅.
Suppose now that L is not strongly complete. Then there are Γ and ∆ such that:

Γ |=Fr(L) ∆ and Γ 6⊢L ∆.

By the Inclusion-exclusion Lemma, there is a L-saturated set Γ∗ such that Γ ⊆ Γ∗

and Γ∗∩∆ = ∅. We prove that Γ∗ cannot be realized in any model based on a frame
for L, and this completes the proof. Suppose, by absurd, that ΓK(α) = Γ∗ for some
Kripke model K and some point α of K. We get:

- α 
 A for every A ∈ Γ;

- α 6
 B for every B ∈ ∆.

Thus Γ 6|=Fr(L) ∆, in contradiction with the above hypothesis.
(iv) Is proved as (iii). ✷

1.6 Separability in Kripke models

We introduce some definitions related to the separability of the points of a Kripke
model by means of formulas (see also [15]).

1.6.1 Definition Let K = 〈P,≤,
〉 be any Kripke model and let V be a set of
propositional variables.

(a) K is (simply) separable iff, for every α, β ∈ P , ΓK(α) = ΓK(β) implies α = β.

(b) K is (simply) V -separable iff, for every α, β ∈ P , ΓV
K(α) = ΓV

K(β) implies α = β.

(c) K is well separable iff, for every α, β ∈ P , ΓK(α) ⊆ ΓK(β) implies α ≤ β.

(d) K is well V -separable iff, for every α, β ∈ P , ΓV
K(α) ⊆ ΓV

K(β) implies α ≤ β.

(e) K is full iff, for every α ∈ P and every saturated set ∆ such that ΓK(α) ⊆ ∆,
there is β ≥ α such that ΓK(β) = ∆.

(f) K is V -full iff, for every α ∈ P and every V -saturated set ∆V such that ΓV
K(α) ⊆

∆V , there is β ≥ α such that ΓV
K(β) = ∆V .

✷

We note that in literature (for instance in [4]) separable models are also called dif-
ferentiated or distinguishable, well separability is called tightness, and full separable
models correspond to descriptive general frames. The following properties can be
easily proved.

1.6.2 Proposition Let K = 〈P,≤,
〉 be a Kripke model and let V be a set of
propositional variables.
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(i) If K is separable and full, then K is well separable and has enough final points.

(ii) If K is V -separable and V -full, then K is well V -separable and has enough
final points.

(iii) If K is V -separable and V is finite, then K has finitely many final points.

✷

A remarkable feature of V -separable and V -full models is that of having maximal
points with respect to the forcing of V -formulas in the following sense.

1.6.3 Proposition Let K = 〈P,≤,
〉 be a V -separable and V -full Kripke model,
where V is any set of propositional variables; let A be a V -formula and let α ∈ P

be such that α 6
 A. Then there is αMAX ≥ α such that αMAX 6
 A and, for every
δ > αMAX , δ 
 A.

Proof: Let us consider the nonempty set

D = {∆V : ∆V is a V -saturated set and ΓV
K(α) ⊆ ∆V and A 6∈ ∆V }.

By Zorn Lemma (see for instance [21]) applied to D (with respect to the partial
order ⊆), D has a maximal element ∆∗. By the V -fullness of K, there is αMAX ≥ α

such that ΓV
K(αMAX) = ∆∗. Suppose that there is δ > αMAX such that δ 6
 A.

Then A 6∈ ΓV
K(δ), hence ΓV

K(δ) ∈ D ; on the other hand, by the V -separability of K,

∆∗ must be properly contained in ΓV
K(δ), in contradiction with the fact that ∆∗ is

maximal in D . Thus the proposition is proved. ✷

In particular, if V is the set of all the propositional variables, we get:

1.6.4 Proposition Let K = 〈P,≤,
〉 be a separable and full Kripke model, let A
be a formula and let α ∈ P be such that α 6
 A. Then there is αMAX ≥ α such that
αMAX 6
 A and, for every δ > αMAX , δ 
 A. ✷

1.7 The notions of Canonicity and ω-canonicity

We introduce the well known notion of canonicity and its relativized counterpart
(see also [15]).

1.7.1 Definition
(A) A logic L is said to be canonical if and only if every separable and full model

of L is based on a frame for L.

(B) A logic L is said to be ω-canonical if and only if, for every finite V , every
V -separable and V -full model of LV is based on a frame for L.

✷
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The following facts are immediate consequences of the corresponding definitions.

1.7.2 Proposition Let L be any intermediate logic. Then:

(i) If L is canonical, then L is ω-canonical.

(ii) If L is strongly complete, then L is strongly ω-complete.

(iii) If L is canonical, then L is strongly complete.

(iv) If L is ω-canonical, then L is strongly ω-complete.

✷

The converses of (i) and (ii) do not hold as we will see later. We do not know
whether the converses of (iii) and (iv) hold, and this seems to be a difficult open
problem.
We recall an important theorem, due to Fine and van-Benthem, which shows how
canonicity is closely related to first-order definable properties of the classes of frames
(for an explanatory discussion about definable first-order properties, see [5]).

1.7.3 Theorem (Van-Benthem) If a logic L is characterized by a first-order de-
finable class of frames, then L is canonical. ✷

Note that, in particular, L has Kripke semantics; in other words, to apply the
previous theorem it is not sufficient to single out some first-order definable class F

of frames for L, but it is required to prove, by means of a completeness theorem,
that L = L (F ).
As usual, the canonical model C L = 〈PL,≤,
〉 of a logic L is the Kripke model such
that:

- PL is the set of all the L-saturated sets.

- ≤ coincides with the inclusion between sets.

- For every propositional variable p and every ∆ ∈ PL, ∆ 
 p iff p ∈ ∆.

Using the Inclusion-exclusion Lemma, one can prove that:

- For every formula A and every ∆ ∈ PL, ∆ 
 A iff A ∈ ∆.

The definition of V -canonical model C V
L of L (where V is some finite set of propo-

sitional variables) is like the definition of canonical model, taking into account the
L, V -saturated sets. Clearly, CL is a full model of L, even better, it contains (up to
isomorphisms, see next section), as generated submodels, all the full models of L; a
similar property holds for C V

L . Thus, denoting with PL and P V
L the frames of CL

and C V
L respectively, we have:

• L is canonical iff PL is a frame for L;

• L is ω-canonical iff, for every finite V , P V
L is a frame for L.
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1.8 Morphisms between frames

We present some kinds of morphisms between frames and between models which
preserve the validity of formulas. We start by introducing the isomorphisms between
frames and models. Two frames P = 〈P,≤〉 and P ′ = 〈P ′,≤′〉 are said to be
isomorphic if there is a bijective map f from P onto P ′ such that, for all α, β,∈ P ,
it holds that:

α ≤ β ⇐⇒ f(α) ≤′ f(β)

In other words, f is an isomorphism between the posets P and P ′. Two models K =
〈P,≤,
〉 and K ′ = 〈P ′,≤′,
′〉 are said to be isomorphic if there is an isomorphism
f between P and P ′ such that, for all the propositional variables p of the language
and all α ∈ P , it holds that:

α 
 p⇐⇒ f(α) 
 p.

This implies that α and f(α) force exactly the same formulas. We point out that
isomorphic frames and isomorphic models can be considered indistinguishable.

On the other hand, if the aim is to preserve the validity of formulas, it may be
used less powerful maps, such as p-morphisms. Let P = 〈P,≤〉 and P ′ = 〈P ′,≤′〉 be
any two frames; a p-morphism from P onto P ′ is a surjective map f : P→P ′ such
that:

(1) f is order preserving;

(2) f is open, that is, for every α ∈ P and β′ ∈ P ′, if f(α) ≤′ β′, then there is β ∈ P

such that α ≤ β and f(β) = β′.

Let K = 〈P,≤,
〉 and K ′ = 〈P ′,≤′,
′〉 be any two Kripke models and let V be a
set of propositional variables. We say that f is a V p-morphism from K onto K ′ iff:

(1) f is a p-morphism from P onto P ′;

(2) For every p ∈ V and α ∈ P , α 
 p iff h(α) 
′ p.

From the definition of V p-morphism, we can deduce the following proposition about
the conservation of formulas.

1.8.1 Proposition Let f be a V p-morphism from K onto K ′, where V is any set
of propositional variables. Then, for every point α of K, ΓV

K(α) = ΓV
K′(f(α)). ✷

From this proposition, it follows that:

1.8.2 Proposition Let P be a frame and suppose that there is a p-morphism from
P onto some frame P ′. Then, for every formula A, P |= A implies P ′ |= A. ✷
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In particular, if P is a frame for a logic L, then also P ′ is a frame for L.
For a frame P , Spl(P ) denotes the class of frames P ′ such that, for every generated
subframe P ′′ contained in some cone P ′

α of P ′, there are no p-morphisms from P ′′

onto P . We can generalize the previous proposition as follows:

1.8.3 Proposition Let P be a frame and let P ′ be a frame such that P ′ 6∈ Spl(P ).
Then, for every formula A, P ′ |= A implies P |= A. ✷

Thus, if P ′ is a frame for a logic L, also P is a frame for L.
We recall that, given a model K = 〈P,≤,
〉, a standard method to obtain a well

V -separable model, in which all the V -saturated sets realized in K are represented,
is the quotientation of K with respect to V -formulas. More formally, let V be any
set of propositional variables and let us define the following relation between the
points of P :

α ≡V β ⇐⇒ ΓV
K(α) = ΓV

K(β).

It is easy to see that ≡V is an equivalence relation. Let us denote with αV the
equivalence class to which the point α of P belongs; then, the quotient model KV =
〈P ′,≤′,
′〉 of K with respect to V is defined as follows:

- P ′ = {αV : α ∈ P};

- αV ≤′ βV iff ΓV
K(α) ⊆ ΓV

K(β);

- For every p ∈ V , αV 
′ p iff α 
 p;

- For every p 6∈ V , αV 
′ p.

One can easily check that the definition is sound; moreover, ΓV
K(α) = ΓV

KV
(αV ) and

KV is well V -separable. We remark that the map h which associates each α of K
with the point αV of KV is surjective, order preserving, but needs not to be open
(thus, in general, it is not a p-morphism).

1.9 Finite Kripke models

Finite Kripke models, that is Kripke models with finitely many points, have some
remarkable properties. We begin with proving that finite V -separable models are
both well V -separable and V -full.

1.9.1 Proposition Let K = 〈P,≤,
〉 be a finite V -separable model, where V is
any set of propositional variables. Then K is well V -separable.

Proof: We have to prove that, for every α ∈ P , the following property holds:

(*) for every β ∈ P , ΓV
K(α) ⊆ ΓV

K(β) implies α ≤ β.
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We prove (*) by induction on depth(α). Let β ∈ P be such that ΓV
K(α) ⊆ ΓV

K(β).

If depth(α) = 1, that is α is a final point, necessarily ΓV
K(α) = ΓV

K(β) (in fact,

ΓV
K(α) is maximal between the consistent sets of V -formulas); by the V -separability

of K, α = β. Suppose that depth(α) > 1 and, by absurd, it is not true that
α ≤ β; let δ1, . . . , δn be all the immediate successors of α. Then δ1 6≤ β, . . . , δn 6≤ β,
hence, by the induction hypothesis applied to such points, there are some V -formulas
A1, . . . , An such that δ1 
 A1, . . . , δn 
 An and β 6
 A1, . . . , β 6
 An. On the other
hand, by the V -separability of K, there must be a V -formula B such that β 
 B

and α 6
 B. Let C be the V -formula B→A1 ∨ · · · ∨ An; we can assert that α 
 C

and β 6
 C, in contradiction with the above assumption. Thus α ≤ β and (*) is
proved. ✷

1.9.2 Lemma Let K = 〈P,≤,
〉 be a finite model, let V be a set of propositional
variables, and let K ′ = 〈P ′,≤′,
′〉 be a Kripke model (possibly K ′ = K); let α ∈ P

and α′ ∈ P ′ be such that ΓV
K(α) = ΓV

K′(α′), and let ∆V be a V -saturated set such

that ΓV
K′(α′) ⊆ ∆V . Then there is β′ ∈ P ′ such that α′ ≤′ β′ and ΓV

K′(β′) = ∆V .

Proof: By the finiteness of K, we can find a finite set of V -formulas Σ such that:

- for every V -formula H, there is A ∈ Σ such that α 
 A↔ H.

Let us assume that Σ = {A1, . . . , Am, B1, . . . , Bl}, where A1 ∈ ∆V , . . . , Am ∈
∆V , B1 6∈ ∆V , . . . , Bl 6∈ ∆V . By definition of V -saturated set, it follows that the
V -formula Z = A1 ∧ · · · ∧Am→B1 ∨ · · · ∨Bl does not belong to ∆V , hence α′ 6
′ Z.
This implies that there is β′ ∈ P ′ such that α′ ≤′ β′, β′ 
′ A1, . . . , β

′ 
′ Am and
β′ 6
′ B1, . . . , β

′ 6
′ Bl. We show that ΓV
K′(β′) = ∆V . Let H ∈ ∆V ; then, for some

1 ≤ i ≤ m, α 
 H ↔ Ai, hence α′ 
′ H ↔ Ai. Since β′ 
′ Ai, it follows that
β′ 
′ H. Likewise we can show that ΓV

K′(β′) ⊆ ∆V ; thus ΓV
K′(β′) = ∆V , and the

proposition is proved. ✷

Taking K = K ′, it is immediately proved that:

1.9.3 Proposition Let K = 〈P,≤,
〉 be a finite model and let V be any set of
propositional variables. Then K is V -full. ✷

In particular, taking as V the set of all the propositional variables, we get:

1.9.4 Proposition Let K = 〈P,≤,
〉 be a finite Kripke model. Then K is full. ✷

We now prove the following proposition about p-morphisms onto finite models.

1.9.5 Proposition Let K = 〈P,≤, ρ,
〉 be a finite V -separable model (where V is
any set of propositional variables) and let K ′ = 〈P ′,≤′, ρ′,
′〉 be any Kripke model
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such that ΓV
K(ρ) = ΓV

K′(ρ′). Let h be a map from the points of K ′ to the points of
K defined as follows:

h(α′) = α iff ΓV
K′(α′) = ΓV

K(α).

Then h is a V p-morphism from K ′ onto K.

Proof: By Lemma 1.9.2 and by the fact that K is V -separable, one can easily check
that h associates, with each α′ ∈ P ′, one and only one α ∈ P , h is order preserving
and h is open. Thus h is a V p-morphism. ✷

We now prove that the finite models of a logic L are based on frames for L.

1.9.6 Proposition Let L be an intermediate logic, let V be a set of propositional
variables and let K = 〈P,≤,
〉 be a finite V -separable model of LV . Then K is
based on a frame for L.

Proof: Suppose, by absurd, that P = 〈P,≤〉 is not a frame for L; then there exist
a model K ′ = 〈P,≤,
′〉, based on the same frame P , α ∈ P and A ∈ L such that
α 6
′ A. Let VA = {q1, . . . , qn} be the set of all the propositional variables occurring
in A; by the finiteness and the V -separability of K, which also imply the well V -
separability of K, we can find some V -formulas H1, . . . , Hn which simulate in K the
forcing of q1, . . . , qn in K ′ respectively; more precisely, for every α ∈ P and every
1 ≤ k ≤ n, it holds that:

α 
′ qk ⇐⇒ α 
 Hk.

Let us take any substitution σ such that σqk = Hk for 1 ≤ k ≤ n. Then, for every
VA-formula B and every α ∈ P , by induction on the structure of B, we can prove
that:

α 
′ B ⇐⇒ α 
 σB.

In particular, we get that α 6
 σA. This gives rise to a contradiction; indeed, A ∈ L

implies that σA ∈ L, that is (being σA a V -formula) σA ∈ LV , thus σA should be
valid in K. ✷

Taking as V the set of all the propositional variables, we get:

1.9.7 Proposition Let L be an intermediate logic and let K = 〈P,≤,
〉 be a finite
separable model of L. Then K is based on a frame for L. ✷

We recall another well known property connected with the finiteness of models.

1.9.8 Proposition Let K = 〈P,≤,
〉 be a V -separable model, where V is a finite
set of propositional variables, and let α be any point of P = 〈P,≤〉 having finite
depth. Then the cone Pα of P is finite
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Proof: By induction on depth(α). If depth(α) = 1, that is α is final, the proposition
is immediate. Suppose that depth(α) > 1 and let β and γ be two distinct points of
Pα. Since β and γ have different V -forcing, one of the following statements (a) or
(b) must hold:

(a) β and γ have different atomic V -forcing;

(b) β and γ do not see the same points.

By the finiteness of V and by the induction hypothesis, only finitely many distinct
points can be in Pα, thus the proposition is proved. ✷

1.10 Frames with enough final points

We show that, as far as completeness matters are concerned, we can limit ourselves
to consider only frames with enough final points (see also [8]). Let K = 〈P,≤,
〉
be a Kripke model and let V be a finite set of propositional variables. We say that
a point α of K is V -final if, for every p ∈ V , either α 
 p or α 
 ¬p. Since V is
finite, it is immediate to prove that, for every α ∈ P , there is α′ ≥ α such that α′

is V -final. The V -pruned model of K is the model KV
pr = 〈P ′,≤′,
′〉 obtained by

taking the points of K up to the V -final points and quotienting the V -final points
with respect to the V -formulas. More precisely, for α ∈ P , let us denote with αV

the equivalence class containing the points which have the same V -forcing of α; then
KV

pr is defined as follows.

(1) P ′ = {α : α ∈ P and α is not V -final} ∪ {αV : α ∈ P and α is V -final}.

(2) For every α, β ∈ P :

- if β is not V -final, then α ≤′ β iff α ≤ β;

- if β is V -final, then α ≤′ βV iff ΓV
K(α) ⊆ ΓV

K(β) (where the equality holds
iff α is V -final and α is equivalent to β).

(3) For every p ∈ V and α ∈ P :

- if α is not V -final, α 
′ p iff α 
 p;

- if α is V -final, αV 
′ p iff α 
 p.

(4) For every p 6∈ V and α′ ∈ P ′, α′ 
′ p.

It should be clear that KV
pr is actually a Kripke model and KV

pr has enough final
points.

1.10.1 Lemma Let K be a Kripke model and let V be a finite set of propositional
variables. Then there is a V p-morphism from K onto the V -pruned model KV

pr of
K.
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Proof: Let us consider the function f which maps every non V-final point of K
in itself and every V -final point α in αV . Then one can easily check that f is a V
p-morphism from K onto KV

pr. ✷

Now we state the main result of this section.

1.10.2 Theorem Let F be any class of frames. Then there is a class FFin, con-
taining only frames with enough final points, such that L (F ) = L (FFin).

Proof: Let K be the class of all Kripke models based on the frames of F ; let K Fin

be the class containing the V -pruned models of the models of K , for every finite
set V ; finally, let us take, as FFin, the class of the frames of the models of K Fin.
Suppose that A 6∈ L (F ) and let K ∈ K be such that A is not valid in K. Let
V = Var(A); then, by Lemma 1.10.1, A is not valid in KV

pr and, since this model

belongs to K Fin, we get that A 6∈ L (FFin). Suppose now that A 6∈ L (FFin);
then PFin 6|= A, for some PFin ∈ FFin. By definition of FFin, there is P ∈ F and
a p-morphism f from P onto PFin; this implies that P 6|= A, hence A 6∈ L (F ), and
this concludes the proof. ✷

As a consequence of this theorem, we can state that:

• A logic L has Kripke semantics iff L is characterized by some class of frames
with enough final points.

Thus, we can assume that a class of frames F which characterizes a logic L contains
only frames with enough final points. Note that the standard tools used in proving
the completeness of a logic, by means of canonical (or ω-canonical) models or by
filtration techniques, actually refer to classes of frames with enough final points.
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Intermediate Logics

In this chapter we introduce some intermediate logics and we report some facts
that will be used later. Thorough this section we essentially follow [4].

2.1 The logics of bounded depth

Let us consider the sequence of formulas bdn defined as follows:

bd1 = p1 ∨ ¬p1

bdn+1 = pn+1 ∨ (pn+1→bdn)

The family of logics Bdn of bounded depth, for n ≥ 1, is defined as follows:

Bdn = Int + bdn.

The frames for Bdn are the frames of depth at most n, as asserted in next propo-
sition.

2.1.1 Proposition P is a frame for the logic Bdn, for n ≥ 1, iff every point of P
has depth at most n. ✷

2.2 The logics of bounded branching

Let us consider the following family of formulas:

bbn =

n∧

i=0

((pi→
∨

j 6=i

pj)→
∨

j 6=i

pj)→
n∨

i=0

pi n ≥ 1

21
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The logics Tn, for n ≥ 1 (also known as Gabbay - de Jongh logics, see [13]), are
defined as follows:

Tn = Int + bbn.

Let P = 〈P,≤〉 be a finite frame and let α ∈ P . We say that α has branching n if
α has at most n distinct immediate successors. It is not difficult to prove that:

2.2.1 Proposition Let P be a finite frame. P is a frame for the logic Tn, with
n ≥ 1, iff every point α of P has branching at most n. ✷

One can also prove that Tn is characterized by the class Tn of n-ary trees (namely,
the class of trees whose non-final nodes have exactly n successors). However, the
completeness proof (i.e., the proof of L (Tn) ⊆ Tn) is not trivial, and the use of
suitable filtration techniques is required. This is due to the fact that Tn is not
ω-canonical, as it will be proved in Section 5.3.

2.3 The Dummett logic

The Dummett logic (or chain logic) is the logic

LC = Int + (p→q) ∨ (q→p).

We say that a frame P = 〈P,≤〉 is strongly connected if, for every α, β, γ ∈ P , the
following condition holds:

α ≤ β ∧ α ≤ γ =⇒ β ≤ γ ∨ γ ≤ β

It is easy to prove that the frames for LC can be characterized as follows:

2.3.1 Proposition P is a frame for the logic LC iff P is strongly connected. ✷

We remark that Dummett logic, for its simple semantics, has been deeply investi-
gated in literature and is well known to any people working in intermediate logics.
Moreover, it has also been considered for its interest to the computer science com-
munity (see [2]).

2.4 The Kreisel-Putnam logic

The Kreisel-Putnam logic KP is the following logic:

KP = Int + kp

where kp is the axiom scheme:

kp = (¬p→q ∨ r)→(¬p→q) ∨ (¬p→r).
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This logic is well known to people working in intermediate propositional logics
(see [11, 12, 18]); moreover, it has been the first counterexample to  Lukasiewicz’s con-
jecture of 1952 ([22]), asserting that intuitionistic propositional logic is the greatest
consistent propositional system L closed under substitution of propositional vari-
ables, modus ponens and disjunction property (Dp):

(Dp) A ∨B ∈ L implies either A ∈ L or B ∈ L.

We recall that the propositional logics that satisfy the disjunction property are
also known in literature as constructive logics. A well known (and easy verifiable)
sufficient condition for (Dp) is expressed by the following proposition.

2.4.1 Proposition Let L be an intermediate logic and suppose that L = L (F )
for some nonempty class of frames F . If, for every P 1 and P 2 in F , these is P ∈ F

such that both P 1 and P 2 are generated subframes of P , then L satisfies (Dp). ✷

Using such a condition, one can prove that also the logics Tn satisfy (Dp). On the
other hand it is easy to see that the logics Bdn and the logic LC cannot satisfy
(Dp) (one has to find suitable instances of the corresponding axiom schema).

As regards the semantics for KP, we can prove that (see also [28]):

2.4.2 Proposition Let P = 〈P,≤〉 be a frame with enough final points. P is a
frame for the logic KP iff, for every α, β, γ ∈ P , the following condition holds:

α ≤ β ∧ α ≤ γ =⇒ ∃δ (α ≤ δ ∧ δ ≤ β ∧ δ ≤ γ ∧ Fin(δ) = Fin(β)∪Fin(γ)).

✷

We point out that it is also possible to characterize, with a more complex first-order
sentence, the whole class of frames for KP, that is the class containing also the
frames without enough final points (see [4, 11, 12]).

2.5 The logics axiomatized by formulas in one variable

In our research, the logics with extra axioms in one variable have a great impor-
tance (see also the Introduction). Here we recall some well known facts about
these logics (see for instance [1, 4, 15]). In order to describe the non intuitionisti-
cally equivalent formulas in one variable p, we consider the Int, {p}-canonical model
Kω = 〈Pω,≤, σω,
〉 defined on the frame Pω = 〈Pω,≤, σω〉 of Figure 2.1 (straight
lines represent the immediate successor relation) and with forcing relation defined
on the variable p as follows:

δ 
 p iff δ = σ1.

Let us consider the following sequence of formulas.
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qp σ1

qσ3

qσ5

qσ7
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♣
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♣
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q σω

Figure 2.1: The {p}-canonical model Kω

nf 1 = p

nf 2 = ¬p
nf 3 = ¬¬p
nf 4 = ¬¬p→p

nf k = nf k−1→nf k−3 ∨ nf k−4 for every k ≥ 5.

Note that:

nf 5 = nf 4→nf 2 ∨ nf 1 = (¬¬p→p)→¬p ∨ p
nf 6 = nf 5→nf 3 ∨ nf 2 = ((¬¬p→p)→¬p ∨ p)→¬¬p ∨ ¬p
nf 7 = nf 6→nf 4 ∨ nf 3 =

(((¬¬p→p)→¬p ∨ p)→¬¬p ∨ ¬p)→(¬¬p→p) ∨ ¬¬p.

The formulas nf n (possibly with different enumerations) are also known in the
literature as Nishimura-formulas ([30]). The following facts are well known.

- δ 
 nf k if and only if σk ≤ δ.

- σm ≤ σn implies ⊢INT nf n→nf m.

- For every {p}-formula A, there are n,m ≥ 1 such that ⊢INT A↔ nf n ∨nf m.

Therefore every {p}-formula is intuitionistically equivalent to some formula of the
kind:

nf k , nf k ∨ nf k+1 with k ≥ 1.

In correspondence, we can give the following list of superintuitionistic logics in one
variable.

• Int + (nf 1 ∨ nf 2) = Int + nf 4 = Cl.
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• Int + (nf 2 ∨ nf 3) = Int + nf 5 = Jn
(Jankov logic or Weak excluded middle logic).

• NLm = Int + nf m, for every m ≥ 6.

• NLn,n+1 = Int + (nf n ∨ nf n+1), for every n ≥ 3.

We point out that:

• NL6 = Int + nf 6 = St is also known as Scott logic ([8]);

• NL7 = Int + nf 7 = Ast is also known as Anti-Scott logic ([9]).

All these logics have a simple semantical characterization (see [15]). Let us call P σk

the generated subframe of Pω having root σk and P σk,k+1
the frame obtained by the

union of P σk
and P σk+1

; let Spl be defined as in Section 1.8. Then:

2.5.1 Proposition Let P be any frame.

(i) P is a frame for the logic NLm+1, for m ≥ 3, iff P ∈ Spl(P σm
).

(ii) P is a frame for the logic NLn+1,n+2, for n ≥ 1, iff P ∈ Spl(P σn,n+1
).

✷

As a consequence of a result due to Sobolev ([34]), the finite frames quoted in the
previous proposition characterize the corresponding logics. In next sections, we
will show that in some cases we can describe the frames characterizing these logics
without any reference to p-morphisms.

2.5.1 The Jankov logic

As seen above, this logic can be axiomatized as follows:

Jn = Int + ¬p ∨ ¬¬p = Int + (¬¬p→p)→p ∨ ¬p.

It is trivial to check that these two axiomatizations actually lead to the same logic.
In fact, it is immediately verified that:

⊢INT (¬p ∨ ¬¬p) → ((¬¬p→p)→p ∨ ¬p).

Moreover, the instance ¬A∨¬¬A of the former axiom scheme can be intuitionistically
derived starting from the instance (¬¬¬A→¬A)→¬A∨¬¬A of the latter one. We
also point out that the axiom schema ¬p∨¬¬p is also called the weak law of excluded
middle (see [17]). We say that a frame P = 〈P,≤〉 is strongly directed if, for every
α, β, γ ∈ P , the following condition holds:

α ≤ β ∧ α ≤ γ =⇒ ∃δ (β ≤ δ ∧ γ ≤ δ).

It is easy to prove that:

2.5.2 Proposition P is a frame for the logic Jn iff P is strongly directed. ✷
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2.5.2 The Scott logic

The Scott Principle, corresponding to the formula nf 6 (and to the formula F9 of [1]),
is the extra intuitionistic axiom schema of a well known intermediate construc-
tive propositional logic quoted in the paper [18] as another example contradicting
Lukasiewicz’s conjecture. This principle has been extensively studied by people
working in intermediate propositional logics (see [7, 28, 29]). In [8] (where a Kripke
frame semantics formerly introduced in [28] is shown to be valid and complete for
St) a logic extending St and maximal in the family of intermediate constructive
propositional logics is exhibited (where a maximal (propositional intermediate) con-
structive logic is a propositional intermediate logic which satisfies (Dp) and does not
admit any constructive extension). In the framework of intermediate propositional
logics, Scott Logic is maximal in the fragment in one variable; moreover, as shown
in [9], the fragment in one variable of any propositional constructive logic is either
contained in the fragment in one variable of propositional St, or it is contained in
the fragment in one variable of the propositional intermediate logic Ast, the latter
being the logic having as extra intuitionistic axiom the formula nf 7. The name
Ast means “anti” Scott: this refers to the fact that the logics St and Ast are con-
structively incompatible, that is, the union of these two formal systems gives rise to
an intermediate propositional logic which does not admit a constructive extension
(in [9] also a maximal intermediate constructive logic is exhibited which includes
Ast).

Here, we are interested in giving a characterization of the frames for St with
bounded depth; we show that the characterization of finite frames for St given in [8]
can be extended to the class of frames for St of finite depth. Let P = 〈P,≤〉 be
a frame, let α be a non-final point of P and let ϕ and ψ be two final points of P .
We say that α is prefinal iff, for every δ > α, δ is final. We say that ϕ and ψ are
prefinally connected in P iff either ϕ = ψ or there is a sequence ϕ1, . . . , ϕn (n > 1)
of final points of P satisfying the following conditions:

(1) ϕ1 = ϕ and ϕn = ψ;

(2) for every 1 ≤ i ≤ n− 1, there is α ∈ P such that α is prefinal and
{ϕi, ϕi+1} ⊆ Fin(α).

2.5.3 Proposition Let P = 〈P,≤〉 be a frame having finite depth. P is a frame
for the logic St iff, for every α ∈ P and for every ϕ and ψ belonging to Fin(α), ϕ
and ψ are prefinally connected in Pα.

Proof: Firstly we observe that, if there are in P a non-final point α and a final point
ϕ ∈ Fin(α) such that, for every α ≤ β < ϕ, β is not prefinal, then P is not a frame
for St. As a matter of fact, since α has finite depth, there is β such that α ≤ β and
ϕ is an immediate successor of β. Moreover there must be a non-final immediate
successor γ of β such that ϕ 6∈ Fin(γ). It is not difficult to define a p-morphism h

from the cone P β of P onto P σ5
such that h(ϕ) = σ2, h(γ) = σ3 and h(β) = σ5, and

this means that P is not a frame for St. Let us assume that there are α ∈ P , ϕ and
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ψ in Fin(α) such that ϕ and ψ are not prefinally connected in Pα; we prove that
P is not a frame for St. By the previous observation, we have only to consider the
case where, for every non-final δ ≥ α and every final ϕ′ ∈ Fin(δ), there is a prefinal
β such that δ ≤ β < ϕ′. Let Φ be the set of all the final points ϕ′ of Pα which are
prefinally connected with ϕ (note that ϕ ∈ Φ and ψ 6∈ Φ). We define a map h from
Pα onto P σ5

in the following way.

- For every final point ϕ′ of Pα:

h(ϕ′) = σ1 if ϕ′ ∈ Φ;

h(ϕ′) = σ2 otherwise.

- For every non-final point δ of Pα:

h(δ) = σ3 if Fin(δ) ⊆ Φ;

h(δ) = σ2 if Fin(δ) ∩ Φ = ∅;

h(δ) = σ5 otherwise.

Note that h(ϕ) = σ1, h(ψ) = σ2 and h(α) = σ5. It is not difficult to check that, in
our hypothesis, h is a p-morphism from Pα onto P σ5

, hence P is not a frame for St
and the “only if” part of the proposition is proved.
Conversely, let us assume that P is not a frame for St; then there are α ∈ P and
a p-morphism from Pα onto P σ5

. Let us take two final points ϕ and ψ such that
h(ϕ) = σ1 and h(ψ) = σ2; it is not difficult to prove that ϕ and ψ cannot be
prefinally connected, and this concludes the proof. ✷

We remark that the condition of “prefinal connection” cannot be expressed by a
first-order formula, and the problem lies in the unbounded number of final points
involved in the definition. A formal proof of this fact can be accomplished by a
standard application of the classical Compactness theorem (see for instance [5]).

2.5.3 The Anti-Scott logic

The frames for Ast with finite depth satisfy a condition which can be expressed by
a first-order sentence, as in the statement of next proposition (see also [9], where
such a condition is introduced to characterize the finite frames of Ast).

2.5.4 Proposition Let P = 〈P,≤〉 be a frame having finite depth. P is a frame
for the logic Ast if and only if, for every α ∈ P , if α is a non-final point of P , then
one of the following conditions (a) or (b) is satisfied.

(a) For every immediate successor δ of α, |Fin(δ)| = 1.

(b) For any two immediate successors β and γ of α in P , if β and γ are non-final,
then Fin(β) = Fin(γ).
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Proof: Let us suppose that, for some non-final point α of P , both (a) and (b) do
not hold in P ; we prove that P is not a frame for Ast. We have that:

(A) There is an immediate successor δ of α which has at least two distinct final
points.

(B) There are two non-final immediate successors β and γ of α such that Fin(β) 6=
Fin(γ).

Without loss of generality, we can assume that there is a final point ϕ1 of Pα such
that ϕ1 ∈ Fin(β) and ϕ1 6∈ Fin(γ). Let us distinguish two cases (C1) and (C2).

(C1) Fin(β) = {ϕ1}.

By (A), there is ϕ2 ∈ Fin(δ) such that ϕ2 6= ϕ1. Let us define a map h from Pα to
P σ6

in the following way.

- h(ϕ2) = σ2.

- For every final point ϕ′ 6= ϕ2, h(ϕ′) = σ1.

- h(β) = σ3.

- For every ε such that α < ε and ε 6= β:

h(ε) = σ1 if ϕ2 6∈ Fin(ε);

h(ε) = σ2 if Fin(ε) = {ϕ2};

h(ε) = σ4 otherwise.

- h(α) = σ6.

Note that h(ϕ1) = σ1 and h(δ) = σ4. It is easy to prove that h is a p-morphism
from Pα onto P σ6

; this means that P is not a frame for Ast.

(C2) Fin(β) 6= {ϕ1}.

In this case Fin(β) contains a point ϕ different from ϕ1. Then we can define a
p-morphism from Pα onto P σ6

which maps ϕ1 in σ2, all the other final points in σ1,
β in σ4, γ alone in σ3 and α alone in σ6; also in this case P is not a frame for Ast
and the “only if” part is completely proved.

Conversely, let us suppose that P is not a frame for Ast; then there is α ∈ P and a
p-morphism h from Pα onto P σ6

. Since α has finite depth, we can assume without
loss of generality that, for every β > α, h(β) 6= σ6; this implies that α is not final
and neither (a) nor (b) hold on α. ✷
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2.6 The Medvedev logic

The Medvedev logic MV is known in literature as the logic of finite problem ([25,
26, 27]), and it arises in the framework of algorithmic interpretation of intuitionistic
connectives (see [4] for more references). Here we are interested in the Kripke se-
mantics of such a logic. Let X be nonempty finite set; the Medvedev frame (shortly,
MV -frame) determined by X, is the frame P = 〈P,≤〉 defined as follows:

- P = {Y : Y ⊆ X and Y 6= ∅}.

- Y ≤ Z iff Z ⊆ Y .

Note that X is the root of P , while the sets {x}, for each x ∈ X, are the final points
of P . For instance, for X2 = {a, b} and X3 = {a, b, c}, the corresponding MV -frames
are represented in Figure 2.2. Let FMV be the class of all the MV-frames; then:

r

{a}
r

{b}

r

{a, b}

❅
❅

❅
❅

�
�
�
�

r

{a}
r

{b}
r

{c}

r{a, b} �
�
�

�
�

r

{a, c}
❅

❅
❅

❅
❅

�
�
�
�
�

r {b, c}❅
❅

❅
❅

❅

r

{a, b, c}

❅
❅

❅
❅

❅

�
�
�
�
�

Figure 2.2: The MV -frames with 2 and 3 final points

MV = L (FMV ).

By this semantical characterization, it immediately follows that:

• St ⊆ MV;

• KP ⊆ MV.

By Proposition 2.4.1, it is immediately proved that MV satisfy (Dp). Moreover,
MV has been the first example in literature of maximal constructive logic ([20, 23]).

Despite the great interest in literature about this logic, no axiomatization is
known; we only know that MV is not finitely axiomatizable ([24]); thus the problem
of its decidability is still open.
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2.7 The logic of rhombuses

The so called logic of rhombuses RH presents some analogies with Medvedev logic,
even if it is less known and less investigated in literature. As for MV, we give a
semantical characterization (see [3, 4, 9, 23]). Let T be a linear ordering; an interval
of T is a pair [t1, t2], with t1 ≤ t2 (we will denote the interval [t, t] simply with t). The
ordering on T induces, in an obvious way, a partial ordering ⊆ on the intervals of T
(which intuitively corresponds to the containment relation) defined in the following
way:

[t1, t2] ⊆ [u1, u2] iff u1 ≤ t1 and t2 ≤ u2.

Let T be a finite linear ordering; the RH-frame P = 〈P,≤〉 determined by T is
defined as follows:

- P = {[t1, t2] : t1, t2 ∈ T and t1 ≤ t2};

- [t1, t2] ≤ [u1, u2] iff [u1, u2] ⊆ [t1, t2].

Note that the intervals of the kind [t, t] are the final points of P and the interval cor-
responding to the endpoints of T is the root of P . For instance, if T = {t1, t2, t3, t4},
with t1 < t2 < t3 < t4, the RH-frame determined by T looks as in Figure 2.3. Let
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Figure 2.3: The RH-frame with 4 final points

FRH be the class of all the RH-frames; then:

RH = L (FRH).

It follows that:

• St ⊆ RH;

• T2 ⊆ RH.
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The logics MV and RH are incomparable; indeed, KP is not contained in RH,
while T2 is not contained in MV. In contrast with the conjecture in [23], RH is not
a maximal among the logics with (Dp); as a matter of fact, in [9] it is exhibited a
logic which has (Dp) and properly extends RH. Also for this logic no axiomatization
is known.
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Chapter 3

Canonicity and ω-Canonicity

In this chapter we will give a more refined classification of Canonicity and ω-
Canonicity, according to the lines followed in [15].

3.1 Kinds of canonicity

In order to prove the canonicity of a logic L, not all the properties involved in the
corresponding definition are required. According to [15], we propose a finer classifi-
cation of canonical logics based on the possibility of weakening the requirements to
be satisfied by the models K without affecting canonicity.

3.1.1 Definition Let L be any intermediate logic.

(a) L is quasi hypercanonical of type 0 (QHY P0) iff the underlying frame of any
separable Kripke model of L is a frame for L.

(b) L is quasi hypercanonical of type 1 (QHY P1) iff the underlying frame of any
well separable Kripke model of L is a frame for L.

(c) L is quasi hypercanonical of type 2 (QHY P2) iff the underlying frame of any
separable Kripke model of L which has enough final points is a frame for L.

(d) L is extensively canonical iff the underlying frame of any Kripke model of L
which is well separable and has enough final points is a frame for L.

✷

Mutual relations between these notions are depicted by the diagram in Figure 3.1,
in which arrows represent the inclusion relation. We give some insights about these

33
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Figure 3.1: Kinds of canonicity

notions by means of a few examples. More precisely, we revise some well known
proofs of canonicity putting into evidence the minimal properties required in the
proof.

First of all, as an example of logics whose canonicity proof requires weak properties
on models, we quote the family of logics of bounded depth Bdh.

3.1.2 Theorem The logics Bdh, for every h ≥ 1, are QHY P0.

Proof: Let K = 〈P,≤,
〉 be a separable model of the logic Bdh. If P is not
a frame for Bdh, we can find h + 1 distinct points α1, . . . , αh+1 of P such that
α1 < · · · < αh+1. By the separability of K, we can find h formulas A1, . . . , Ah such
that, for every 1 ≤ m ≤ h, it holds that:

- αm 6
 Am;

- αm+1 
 Am.

It follows that α1 does not force the instance of the axiom schema bdh obtained by
replacing pm with Am, a contradiction ✷

As an immediate consequence, we can state the following completeness theorem.

3.1.3 Corollary The logic Bdh, with h ≥ 1, is characterized by the class of frames
with depth at most h. ✷

An example of quasi hypercanonical logic of type 1 is the Dummett logic LC.

3.1.4 Theorem The Dummett logic LC is QHY P1.
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Proof: Let K = 〈P,≤,
〉 be a well separable model of LC. If P is not a frame for
LC, then there are α, β, γ ∈ P such that α ≤ β, α ≤ γ, β 6≤ γ and γ 6≤ β. By the
well separability of K, there are two formulas A and B such that:

- β 
 A and γ 6
 A;

- γ 
 B and β 6
 B.

Thus α cannot force the instance (A→B) ∨ (B→A) of the axiom scheme of LC, a
contradiction. ✷

3.1.5 Corollary The logic LC is characterized by the class of frames strongly con-
nected. ✷

We now exhibit a model of LC based on a frame which is not strongly connected.
Let P = 〈P,≤〉 be the frame defined as in the left hand part of Figure 3.2. that is:

P ′

α1 q

α2 q

α3 q

♣

♣

♣

♣

β q

ϕ q

P

α1 q✁
✁
✁
✁
✁
✁
✁

α2 q

α3 q

♣

♣

♣

♣ βq❜
❜

❜❜
ϕ q

Figure 3.2: The frames P and P ′

- P = {αk : k ≥ 1} ∪ {β, ϕ};

- α1 < α2 < . . . < αk < . . . < ϕ;

- α1 < β < ϕ and, for every k ≥ 2, αk 6< β and β 6< αk.

Let us consider the model K = 〈P,≤,
〉 based on the frame P whose forcing relation

 between the points of P and the propositional variables p0, p1, . . . of the language
is defined as follows:

- for every k ≥ 1 and every δ ∈ P , δ 
 pk iff either δ ≥ αk or δ = β;

- δ 
 p0 iff δ = ϕ.
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It is immediate to see that K is separable (in fact, any two distinct points of K are
separated by a propositional variable) and has enough final points. Let P ′ = 〈P ′,≤′〉
be the linear frame in the right hand part of the figure above (where P ′ coincides
with P ) and let K ′ be the model P ′ = 〈P ′,≤′,
′〉, where 
′ is defined as 
. Let,
for each k ≥ 0, Vk = {p0, . . . , pk}; then the following properties hold.

(A) For every k ≥ 1, ΓVk

K′(αk) = ΓVk

K′(β).

The proof of (A) is an easy induction on the structure of the formulas. From (A),
by induction on the complexity of the formulas, it follows that:

(B) For every δ ∈ P , ΓK(δ) = ΓK′(δ).

Let us consider the most interesting case where, for k ≥ 1, αk 6
′ A→B and we have
to prove that αk 6
 A→B. Let δ ≥′ αk be such that δ 
′ A and δ 6
′ B; if either
δ = αm, for some m ≥ k, or δ = ϕ, by the induction hypothesis we immediately
have that δ 
 A and δ 6
 B, hence (αk ≤ δ) αk 6
 A→B. It remains to consider the
case δ = β. By (A), we can find j ≥ k such that αj 


′ A and αj 6

′ B; as before, we

can conclude that αk 6
 A→B.
By (B), it follows that ΓK(α1) = ΓK′(α1) and, since K ′ is evidently a model of
LC, we can state that K is a model of LC as well. Finally, since P is not strongly
connected, we can conclude that:

3.1.6 Theorem The logic LC is not QHY P2. ✷

Note however that K is not well separable; for instance, for every k ≥ 1 ΓK(αk) ⊆
ΓK(β), but αk 6≤ β.

An example of QHY P2 logic is the Jankov logic Jn.

3.1.7 Theorem The logic Jn is QHY P2.

Proof: Let K = 〈P,≤,
〉 be a separable model of Jn having enough final points
and let us suppose that P is not strongly directed. Then there must be α, β, γ ∈ P

such that:

- α ≤ β and α ≤ γ;

- for every δ ∈ P , either β 6≤ δ or γ 6≤ δ.

Let, by definition of K, ϕ1 and ϕ2 be two final points such that β ≤ ϕ1 and γ ≤ ϕ2.
By the above assumption, it is not true that β ≤ ϕ2, hence ϕ1 and ϕ2 are distinct;
by the separability of K, there exists a formula A such that ϕ1 
 A and ϕ2 6
 A,
that is ϕ2 
 ¬A. Thus it is not the case that α 
 ¬A ∨ ¬¬A, and so an instance of
the axiom schema of Jn is not valid in K. ✷
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3.1.8 Corollary The logic Jn is characterized by the class of frames strongly di-
rected. ✷

We give now an example of a well separable model K = 〈P,≤,
〉 of Jn based on
a frame which is not strongly directed. Let us consider the frame P = 〈P,≤〉 (see
Figure 3.3), where:

- P = {ρ} ∪ {αk : k ≥ 0} ∪ {βk : k ≥ 0};

- αk ≤ δ iff δ = αm and k ≤ m;

- βk ≤ δ iff δ = βm and k ≤ m;

- ρ ≤ δ for every δ ∈ P .

ρ
q❅

❅
qα0

qα1

qα2

♣
♣
♣
♣
♣

�
�
q β0

q β1

q β2
♣
♣
♣
♣
♣

Figure 3.3: The non strongly directed frame P

Let us divide the variables of the language in the two disjoint countable sets p0, p1, . . .
and q0, q1, . . ., and let Vk = {p0, . . . , pk, q0, . . . , qk}. We define the forcing relation 


as follows:

- δ 
 pk iff either αk ≤ δ or β0 ≤ δ;

- δ 
 qk iff either βk ≤ δ or α0 ≤ δ.

It is easy to prove that:

ΓVk

K (αk) = ΓVk

K (βk).

This implies that, for every formula A, ρ 
 ¬A ∨ ¬¬A, hence K is a model of Jn.
In order to prove that K is well separable, it suffices to observe that, for each pair
of points αj and βl (j, l ≥ 0), the following facts hold:

- αj 
 ql+1 and βl 6
 ql+1;

- βl 
 pj+1 and αj 6
 pj+1.

Therefore, any two points of K are well separated by a propositional variable. We
can conclude that K is a well separable model of Jn, whose underlying frame is not
strongly directed; then:

3.1.9 Theorem The logic Jn is not QHY P1. ✷
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Note however that K has not any final point.
We could continue along these lines and, for instance, provide examples of exten-

sively canonical logics which are neither QHY P1 nor QHY P2; on the other hand,
in the sequel, we are not interested in such a refined classification. Indeed, we will
take into consideration only one kind of hypercanonicity, according to the following
definition:

• Let L be any intermediate logic. L is hypercanonical iff the underlying frame
of any separable Kripke model of L with enough final points is a frame for L.

Note that hypercanonicity coincides with the definition of QHY P2. On the other
hand, since hereafter we will assume that Kripke models have enough final points,
hypercanonicity becomes the most elementary kind of canonicity, while the set of the
QHY P1 logics collapses into the set of the extensively canonical logics. Moreover,
we consider elementary also extensive canonicity, whereas the relevant gap stands
in the passage from extensive canonicity to the “simple” canonicity which requires
the fullness of models.
An example of logic which is canonical, but not extensively canonical (and where
the canonicity proof requires more sophisticated arguments than the ones used so
far) is the Kreisel-Putnam logic KP. We point out that the canonicity of KP is a
well-known property. For instance, it can be derived by the fact that the class of
frames for KP is first-order definable (see Section 2.4) by applying Van-Benthem
Theorem (Theorem 1.7.3), or it can be stated as a consequence of a general theorem
about canonicity explained in [14]. Here we give a direct proof in order to put into
evidence the role played by the fullness property.

3.1.10 Theorem The logic KP is canonical.

Proof: Let K = 〈P,≤,
〉 be a separable and full model of KP and let α, β, γ ∈ P

be such that α ≤ β and α ≤ γ. We have to show that there is δ ∈ P such that:

(a) α ≤ δ, δ ≤ β and δ ≤ γ;

(b) Fin(δ) = Fin(β) ∪ Fin(γ).

Let us take the set:

∆ = {A : Γ(α) ∪ Negβ,γ ⊢INT A}

where Negβ,γ denotes the set of the negated formulas belonging to Γ(β) ∩ Γ(γ).

(i) ∆ is a KP-saturated set.

It is immediate to prove that ∆ is consistent, ∆ is closed under provability and
KP ⊆ ∆. Suppose now that A ∨ B ∈ ∆; then, for some C1, . . . , Cn ∈ Γ(α) and
¬H1, . . . ,¬Hm ∈ Negβ,γ , we have that C1∧· · ·∧Cn∧¬H1∧· · ·∧¬Hm ⊢INT A∨B. Let
H be the formula ¬H1∧· · ·∧¬Hm; since ⊢INT ¬¬H ↔ H, we get that α 
 ¬¬H→
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A ∨ B and, since α forces all the instances of kp, α 
 (¬¬H→A) ∨ (¬¬H→B).
Let us suppose, by definiteness, that α 
 ¬¬H→A; then ¬¬H→A ∈ Γ(α), which
implies that Γ(α)∪Negβ,γ ⊢INT A, that is A ∈ ∆. Thus (i) is proved. By definition
of ∆, we immediately have that:

(ii) Γ(α) ⊆ ∆, ∆ ⊆ Γ(β) and ∆ ⊆ Γ(γ).

We now show that:

(iii) For every consistent maximal set Φ, ∆ ⊆ Φ iff either Γ(β) ⊆ Φ or Γ(γ) ⊆ Φ.

By (ii) the “if” part is immediate. Suppose now that ∆ ⊆ Φ, Γ(β) 6⊆ Φ and
Γ(γ) 6⊆ Φ. Then there are two formulas H and K such that H ∈ Γ(β), K ∈ Γ(γ),
H 6∈ Φ and K 6∈ Φ. It follows that ¬¬(H ∨ K) ∈ Negβ,γ , hence ¬¬(H ∨ K) ∈ ∆
and ¬¬(H ∨K) ∈ Φ. Since Φ is a consistent maximal set (hence a Cl-saturated set)
it holds that H ∨K ∈ Φ, hence either H ∈ Φ or K ∈ Φ, in contradiction with the
above assumption; thus (iii) is proved.
By (i) and by the fullness of K, there is δ ∈ P such that Γ(δ) = ∆; by (ii), (iii), and
by the separability and the fullness of K, δ satisfies the Conditions (a) and (b), and
this completes the proof. ✷

3.1.11 Corollary The logic KP is characterized by the class of frames with enough
final points which satisfy the condition of Proposition 2.4.2. ✷

In Section 5.3 it will be proved that KP is not extensively ω-canonical, and this
implies that KP is not even extensively canonical.

3.2 Kinds of ω-canonicity

We can now repeat the discussion about canonicity in the context of the ω-canonicity.
Clearly some notions collapse, due to the fact that, for V -finite, V -separable models
have (finitely many) enough final points. Therefore, the relevant notions are the
ones of ω-hypercanonicity, extensive ω-canonicity, ω-canonicity. The corresponding
definitions are a natural relativisation of the corresponding ones given for canonicity.
More precisely:

3.2.1 Definition Let L be any intermediate logic.

(a) L is ω-hypercanonical iff, for every finite V , the underlying frame of any V -
separable Kripke model of LV is a frame for L.

(b) L is extensively ω-canonical iff, for every finite V , the underlying frame of any
well V -separable Kripke model of LV is a frame for L.

✷
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It is evident that:

• hypercanonicity =⇒ ω-hypercanonicity;

• extensive canonicity =⇒ extensive ω-canonicity.

We also remark that the significant distinction, in which we are mainly interested,
is between the extensive ω-canonicity and the “simple” ω-canonicity which requires
V -fullness. Note that, since the logic Bdh (h ≥ 1) is ω-hypercanonical and since
every V -separable model of Bdh, for V finite, is finite (see Proposition 1.9.8), we
can immediately state that:

3.2.2 Corollary The logic Bdh, for every h ≥ 1, is characterized by the class of
finite frames with depth at most h. ✷

We stress that this result implies the decidability of Bdh.
In next chapters we will provide a more accurate discussion of such notions and

we will present general techniques in order to classify logics.



Chapter 4

Analysis of Canonicity

In this chapter we give a systematic study of canonicity, strong completeness and
other related notions. The Canonicity Criterion here stated is formally similar to the
one in [15], while the Strong Completeness Criterion has a more general formulation
than in [15]. Moreover, the techniques here used are different from the ones explained
in [15]: as a matter of fact, in the quoted paper an algebraic-categorical approach is
adopted, while our techniques, which refer to Kripke semantics, are more inspired to
the ones used in Model Theory. We also state a criterion for the hypercanonicity and
one for the extensive canonicity. The main result of the chapter is the classification
of the logics in one variable with respect to the strong completeness:

• All the intermediate logics axiomatized by axioms in one variable, except four
of them, are not strongly complete.

We point out that this significative result has been firstly proved in [15]; before this
paper, it was only known that St is not strongly complete [33]. Furthermore, we
refine this classification, considering also the family of logics in one variable having
frames with bounded depth (these results are unpublished). Finally, we give some
applications to Medvedev logic and to the logic of rhombuses.

4.1 Some criteria for canonicity

In order to study in a systematic way the notions of canonicity and strong com-
pleteness, we introduce the notion of chain of frames and some notions of limit of a
chain 1. A chain of frames

C = {Pn, fn}n≥1

1We recall that we take into account only frames with enough final points.

41
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is a sequence of frames Pn = 〈Pn,≤n〉, for each n ≥ 1, and of p-morphisms fn
from Pn+1 onto Pn. We now define four different notions of limit of a chain. Let
P = 〈P,≤〉 be any frame and let, for each n ≥ 1, hn be a p-morphism from P onto
Pn.

(1) We say that P is a weak limit of C with projections {hn}n≥1 iff the p-
morphisms hn commute with the p-morphisms fn, that is:

hn = fn ◦ hn+1, for every n ≥ 1.

This property can be represented by the commutative diagram in Figure 4.1. We

r

P 1 f1
r

P 2✛ f2
r

P 3✛ ♣ ♣ ♣

♣ ♣ ♣

r

P
❍❍❍❍❍❍❍❍❍❍❍❍❨

h1

❅
❅

❅
❅

❅❅■

h2

✻

h3

Figure 4.1: Diagram of a chain of frames

call hn the projection of P onto Pn.

(2) We say that P is a separable weak limit of C with projections {hn}n≥1 iff:

- P is a weak limit of C with projections {hn}n≥1;

- for every α, β ∈ P , if, for all n ≥ 1, hn(α) = hn(β), then α = β.

(3) We say that P is a well separable weak limit of C with projections {hn}n≥1 iff:

- P is a weak limit of C with projections {hn}n≥1;

- for every α, β ∈ P , if, for all n ≥ 1, hn(α) ≤n hn(β), then α ≤ β.

(4) We say that P is a limit of C with projections {hn}n≥1 iff:

- P is a well separable limit of C with projections {hn}n≥1;

- for every α1 ∈ P1, . . . , αn ∈ Pn . . ., if, for all n ≥ 1, αn = fn(αn+1), then
there is α ∈ P such that hn(α) = αn for every n ≥ 1.
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Clearly, each definition is a proper refinement of the previous one; moreover, the
limit of a chain is uniquely determined (up to isomorphisms), as proved in next
proposition.

4.1.1 Proposition Let C = {Pn, fn}n≥1 be a chain of frames Pn = 〈Pn,≤n〉.
Then C has one and only one limit (up to isomorphisms).

Proof: To prove the existence of at least one limit, let us define the frame P ∗ =
〈P ∗,≤∗〉 as follows:

- P ∗ = {α∗ = 〈α1, α2, . . .〉 : for every n ≥ 1, αn ∈ Pn and αn = fn(αn+1)};

- 〈α1, α2, . . .〉 ≤
∗ 〈β1, β2, . . .〉 iff, for every n ≥ 1, αn ≤n βn.

It is easy to see that P ∗ is a limit of C having, as projections, the maps h∗n such
that:

h∗n(〈α1, . . . , αn, . . .〉) = αn.

Suppose now that P ′ and P ′′ are two distinct limits of C with projections {h′n}n≥1

and {h′′n}n≥1 respectively. Let us define a map g from P ′ to P ′′ in the following way:

g(α′) = α′′ iff h′n(α′) = h′′n(α′′) for every n ≥ 1 .

Then g is an isomorphism between the frames P ′ and P ′′, and this completes the
proof. ✷

Hereafter we assume that the limit of a chain is defined as in the proof of the previous
proposition. We point out that this kind of construction is typical of Category
Theory (see for instance [19]). As a matter of fact, let us consider the category P
having as objects the posets and as arrows the order preserving maps between posets,
with the usual operation of composition. Then a chain of frames C = {Pn, fn}n≥1

corresponds to a cochain diagram, while a weak limit P with projections {hn}n≥1

corresponds to a cocone 〈P , {hn}n≥1〉 of C . It is worth noting that the limit P ∗ with
the projections {h∗n}n≥1, as defined in Proposition 4.1.1, is actually a limit of C in
the category P according to the definition of Category Theory; namely:

(1) 〈P ∗, {h∗n}n≥1〉 is a cocone of C ;

(2) For every other cocone 〈P , {hn}n≥1〉 of C , there is a unique order preserving
map g from P onto P ∗ such that, for every n ≥ 1, hn = h∗n ◦ g (universal
property).

On the other hand, we are not interested in arbitrary order preserving maps, but
only in p-morphisms, that is, in maps which preserve the validity of certain formulas.
This is the same as restricting to the subcategory P′ of P, having as arrows the order
preserving maps which are p-morphisms. In this category the limit P ∗ is not even
a limit in the categorical sense, since the universal property may lack (indeed, it
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is not even guaranteed that there is a p-morphism from any weak limit P of C

onto P ∗. We now pass to define a chain of Kripke models, which is a natural
generalization of the chain of frames. Let C = {Pn, fn}n≥1 be a chain of frames and
let V1 ⊆ V2 ⊆ · · · ⊆ Vn · · · be a sequence of sets of propositional variables such that⋃

n≥1 Vn coincides with the set of all the variables of the language. Then

CK = {Kn, Vn, fn}n≥1

is a chain of models if, for every n ≥ 1, it holds that:

(1) Kn = 〈Pn,≤n,
n〉 is a Vn-separable model based on the frame Pn.

(2) fn is a Vn p-morphism from Kn+1 onto Kn.

Note that, by (2), for every α ∈ Pn+1 we have that:

ΓVn

Kn+1
(α) = ΓVn

Kn
(fn(α)).

This means that passing from α′ ∈ Pn to any preimage of α′ with respect to fn, the
forcing of the Vn-formulas does not change. The chain of frames associated with CK

is the chain C = {Pn, fn}n≥1, where Pn is the frame of Kn.
We can extend the notions of limit of a chain of frames to the case of chains of
models. Let CK = {Kn, Vn, fn}n≥1 be a chain of models, let C be the chain of frames
associated with CK , let K = 〈P,≤,
〉 be any Kripke model and let P = 〈P,≤〉 be
the frame of K.

(1) We say that K is a weak limit of CK with projections {hn}n≥1 iff:

- P is a weak limit of C with projections {hn}n≥1;

- hn is a Vn p-morphism from K onto Kn.

(2) We say that K is a separable weak limit of CK with projections {hn}n≥1 iff:

- P is a separable weak limit of C with projections {hn}n≥1;

- hn is a Vn p-morphism from K onto Kn.

(3) We say that K is a well separable weak limit of CK with projections {hn}n≥1 iff:

- P is a well separable weak limit of C with projections {hn}n≥1;

- hn is a Vn p-morphism from K onto Kn.

(4) We say that K is a limit of CK with projections {hn}n≥1 iff:

- P is a limit of C ;

- hn is a Vn p-morphism from K onto Kn.
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4.1.2 Proposition Let CK = {Kn, Vn, fn}n≥1 be a chain of models and let K =
〈P,≤,
〉 be a weak limit of CK having projections {hn}n≥1. Then, for every α ∈ P ,
it holds that:

(i) ΓVn

K (α) = ΓVn

Kn
(hn(α)), for every n ≥ 1.

(ii) ΓK(α) =
⋃

n≥1 ΓVn

Kn
(hn(α)).

Proof: Since hn is a Vn p-morphism, (i) immediately follows; (ii) is a consequence
of (i). ✷

Thus, the model Kn of a chain CK can be viewed as a sort of approximation, up to
the Vn-formulas, of any weak limit of CK .
Let CK be a chain of models and let P = 〈P,≤〉 be a weak limit with projections
{hn}n≥1 of the chain of frames C associated with CK ; then the weak limit K =
〈P,≤,
〉 of CK based on P and having the same projections {hn}n≥1 is uniquely
determined by the following condition:

for every p ∈ Vn, α 
 p iff hn(α) 
n p

One can easily check that the above condition actually defines a forcing relation; in
particular, the limit of a chain of models is unique, up to isomorphisms. Note that,
choosing different projections, we obtain different forcing relations. We now study
the properties of the models of CK which are preserved in weak limits.

4.1.3 Proposition Let L be an intermediate logic and let CK = {Kn, Vn, fn}n≥1

be a chain of models Kn of L. Then every weak limit of CK is a model of L.

Proof: Let K = 〈P,≤,
〉 be a weak limit of CK having projections {hn}n≥1. Let us
take any formula A of L and any point α of P . Let n ≥ 1 be such that Var(A) ⊆ Vn;
since hn(α) 
n A and ΓVn

K (α) = ΓVn

Kn
(hn(α)), it follows that α 
 A, hence K is a

model of L. ✷

4.1.4 Proposition Let L be an intermediate logic and let CK = {Kn, Vn, fn}n≥1

be a chain of models Kn of L. Then every separable weak limit of CK is a separable
model of L.

Proof: Let K = 〈P,≤,
〉 be a separable weak limit of CK having projections
{hn}n≥1. By Proposition 4.1.3, K is a model of L. To prove the separability, let
α, β ∈ P be such that ΓK(α) = ΓK(β). Then, for every n ≥ 1, ΓVn

K (α) = ΓVn

K (β),

hence ΓVn

Kn
(hn(α)) = ΓVn

Kn
(hn(β)). Since, by definition of CK , Kn is Vn-separable,

we have that hn(α) = hn(β) for every n ≥ 1; by definition of separable weak limit,
it follows that α = β. ✷

4.1.5 Proposition Let L be an intermediate logic and let CK = {Kn, Vn, fn}n≥1

be a chain of well Vn-separable models Kn of L. Then every well separable weak
limit of CK is a well separable model of L.
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Proof: Let K = 〈P,≤,
〉 be a well separable weak limit of CK having projections
{hn}n≥1. By Proposition 4.1.3, K is a model of L. To prove the well separability,
let α, β ∈ P be such that ΓK(α) ⊆ ΓK(β). Then, for every n ≥ 1, ΓVn

K (α) ⊆ ΓVn

K (β),

hence ΓVn

Kn
(hn(α)) ⊆ ΓVn

Kn
(hn(β)). Since Kn is well Vn-separable, we have that

hn(α) ≤n hn(β) for every n ≥ 1; by definition of well separable weak limit, it follows
that α ≤ β. ✷

4.1.6 Proposition Let L be an intermediate logic and let CK = {Kn, Vn, fn}n≥1

be a chain of Vn-full models Kn of L. Then the limit K∗ = 〈P ∗,≤∗,
∗〉 of CK is a
separable and full model of L.

Proof: By Proposition 4.1.4, K∗ is a separable model of L. To prove the fullness,
let α∗ = 〈α1, α2, . . .〉 be a point of K∗ and let ∆ be any saturated set such that
ΓK∗(α∗) ⊆ ∆. Let, for every n ≥ 1, ∆n be the set of all the Vn-formulas of ∆. Then,

for every n ≥ 1, ΓVn

K∗(α∗) ⊆ ∆n, that is ΓVn

Kn
(αn) ⊆ ∆n. Since ∆n is a Vn-saturated

set and Kn is Vn-full, there is βn ∈ Pn such that αn ≤n βn and ΓVn

Kn
(βn) = ∆n;

moreover, since ΓVn

Kn+1
(βn+1) = ∆n = ΓVn

Kn
(βn) and Kn is Vn-separable, it holds that

βn = fn(βn+1). Therefore, β∗ = 〈β1, . . . , βn, . . .〉 is a point of P ∗ such that α∗ ≤∗ β∗.
We have:

ΓK∗(β∗) =
⋃

n≥1

ΓVn

Kn
(βn) =

⋃

n≥1

∆n = ∆

and this proves the fullness of K∗. ✷

This proposition can be used to build “big” full models. Indeed, when we are con-
cerned with finite models, no problems arise, since finite models are also full. On the
other hand, when we deal with an infinite model K = 〈P,≤, ρ,
〉, it is not trivial to
check that K contains points in correspondence of all the saturated sets containing
ΓK(ρ). The previous proposition allows us to get over the difficulty, at least when
the full model K can be approximated by means of finite models Kn. To complete
the picture, we point out that weak limits (and also limits) do not preserve, in gen-
eral, the first-order properties valid in all the frames of a chain, as we will see later.

Now we formulate some criteria for hypercanonicity, extensive canonicity and cano-
nicity respectively.

4.1.7 Theorem (Hypercanonicity Criterion)
Let L be an hypercanonical logic of and let C = {Pn, fn}n≥1 be a chain of frames
Pn = 〈Pn,≤n〉 for L such that Pn is countable. Then every separable weak limit of
C is a frame for L.

Proof: We can define a chain of models

CK = {Kn, Vn, fn}n≥1
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whereKn is based on Pn andKn is Vn-separable (or even well Vn-separable). Indeed,
since the frames involved are countable, we can choose an increasing sequence of
countable sets Vn (contained in the countable set of all the variables of the language)
such that any two points of Pn are (well) separated by some propositional variable
of Vn. Moreover, since Pn is a frame for L, Kn is a model of L. Let P be a separable
weak limit of C having projections {hn}n≥1 and let K be the separable weak limit
model of CK based on P and having the same projections. By Proposition 4.1.4, K
is a separable model of L; by the hypercanonicity of L, we can conclude that P is a
frame for L. ✷

4.1.8 Theorem (Extensive Canonicity Criterion)
Let L be an extensive canonical logic and let C = {Pn, fn}n≥1 be a chain of frames
Pn = 〈Pn,≤n〉 for L such that Pn is countable. Then every well separable weak
limit of C is a frame for L.

Proof: As in the proof of the Hypercanonicity Criterion, we can define a chain of
models

CK = {Kn, Vn, fn}n≥1

where Kn is based on Pn and Kn is well Vn-separable. By Proposition 4.1.5, K is a
well separable model of L; by the extensive canonicity of L, P is a frame for L. ✷

We now state the Canonicity Criterion, which essentially coincides with the
formulation in [15].

4.1.9 Theorem (Canonicity Criterion)
Let L be a canonical logic and let C = {Pn, fn}n≥1 be a chain of finite frames
Pn = 〈Pn,≤n〉 for L. Then the limit of C is a frame for L.

Proof: Let us define a chain of models

CK = {Kn, Vn, fn}n≥1

where Kn is a Vn-separable model based on Pn (note that we only need an increasing
sequence of finite sets Vn). Since Pn is a finite frame for L, it follows that Kn is
also a Vn-full model of L. By Proposition 4.1.6, the limit K∗ of CK is a separable
and full model of L; since L is canonical, the frame P ∗ of K∗ (that is, the limit of
C ) is a frame for L. ✷

We remark that the limit P ∗ in the proof of the Canonicity Criterion is actually a
generated subframe of the frame of the canonical model of L. We also stress that it
is not immediate to extend the Canonicity Criterion to chains of countable frames;
to do this, we have to give suitable conditions on the frame Pn, in order to define a
full model Kn on Pn. One could exploit, for instance, the arguments explained in
next chapter; on the other hand, we have not in mind significative applications of
such an extended criterion.
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4.2 A criterion for the strong completeness

We now pass to the analysis of strong completeness. As the definition suggests, we
have to consider all the models which realize any L-saturated set ∆. This requires a
deeper study of the weak limits of a chain and of the relations between weak limits
and the limit, which is, roughly speaking, the “biggest” model of ∆. In the following
proposition we show that, in some cases, we can completely characterize all the (non
necessarily separable) models of ∆.

4.2.1 Proposition Let CK = {Kn, Vn, fn}n≥1 be a chain of finite models Kn =
〈Pn,≤n, ρn,
n〉, let ∆ =

⋃
n≥1 ΓVn

Kn
(ρn) and let K = 〈P,≤, ρ,
〉 be any Kripke

model. Then, ΓK(ρ) = ∆ if and only if K is a weak limit of CK .

Proof: The “if” part corresponds to Point (ii) of Proposition 4.1.2. Suppose now
that ΓK(ρ) = ∆ and let us define, for each n ≥ 1, a map hn from the points of K
to the points of Kn in the following way:

hn(α) = α′ iff ΓVn

K (α) = ΓVn

Kn
(α′).

Since, for each n ≥ 1, ΓVn

K (ρ) = ΓVn

Kn
(ρn) and Kn is a finite Vn-separable model, we

can apply Proposition 1.9.5 and claim that hn is a Vn p-morphism from K onto Kn.
Moreover, by definition of CK the maps hn commute with the maps fn; this means
that K is a weak limit of CK with projections {hn}n≥1. ✷

4.2.2 Theorem (Necessary Condition for Strong Completeness)
Let L be a strongly complete logic and let C = {Pn, fn}n≥1 be a chain of finite
frames Pn = 〈Pn,≤n, ρn〉 for L. Then, there is a weak limit P = 〈P,≤, ρ〉 of C

which is a frame for L.

Proof: As in the proof of the Canonicity Criterion, we can define a chain of models
CK = {Kn, Vn, fn}n≥1, where the Vn-separable model Kn is based on the frame Pn.
Let us consider the L-saturated set ∆ =

⋃
n≥1 ΓVn

Kn
(ρn); since L is strongly complete,

there must be a model K = 〈P,≤, ρ,
〉 such that ΓK(ρ) = ∆ and P = 〈P,≤, ρ〉 is
a frame for L. Since the models Kn are finite, we can apply Proposition 4.2.1 and
claim that K is a weak limit of CK , hence P is a weak limit of C . ✷

This theorem is not of great use if our concern is to disprove the strong completeness
of L; indeed, we should check that all the weak limits of the chain C are not frames
for L. On the other hand, we can limit ourselves to study particular frames, namely
the stable reductions of the limit of C , which convey useful information about weak
limits.

Let C = {Pn, fn}n≥1 be a chain of frames and let P ∗ = 〈P ∗,≤∗〉 be the limit of
C . We say that α∗ ∈ P ∗ is stable if we definitively (i.e., for all n greater then some
integer k) have that αn has only one preimage with respect to fn.
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4.2.3 Proposition Let C = {Pn, fn}n≥1 be a chain of frames Pn = 〈Pn,≤n, ρn〉,
let P ∗ = 〈P ∗,≤∗, ρ∗〉 be the limit of C and let P = 〈P,≤, ρ〉 be a weak limit of C .
Then there is a map h : P→P ∗ such that:

(i) h(ρ) = ρ∗;

(ii) α ≤ β implies h(α) ≤∗ h(β);

(iii) if h(α) <∗ β∗ and β∗ is stable, then there is β ∈ P such that α < β and
h(β) = β∗.

Proof: Suppose that P is a weak limit of C having projections {hn}n≥1 and let us
define, for each α ∈ P :

h(α) = 〈h1(α), h2(α), . . .〉.

By definition, hn(α) = fn(hn+1(α)) for every n ≥ 1, hence h(α) is a point of P ∗ and
h is a map from P to P ∗. It is immediate to prove that h(ρ) = 〈ρ1, ρ2, . . .〉 = ρ∗ and
that h is order preserving. Suppose now that h(α) <∗ β∗ (i.e. hn(α) ≤n βn for every
n ≥ 1) and that β∗ = 〈β1, β2, . . .〉 is stable. Then there is n such that, for every
k ≥ n, βk+1 is the only preimage of βk with respect to fk. Since hn(α) <n βn, there
is β ∈ P such that α < β and hn(β) = βn; by induction on j, we can prove that
hj(β) = βj for every j ≥ n. This also implies that hj(β) = βj for every j ≥ 1, thus:

h(β) = 〈h1(β), h2(β), . . .〉 = 〈β1, β2, . . .〉 = β∗

and (iii) is proved. ✷

We remark that the map h of the previous proposition is not, in general, a p-
morphism, since the “openness” property is guaranteed only for the stable points of
P ∗ (thus, in general, it may be not even surjective).
Now we show that the stable points of a full model of a logic have a primary im-
portance in determining the strong completeness. To this aim, we introduce the
following definition.

4.2.4 Definition Let C = {Pn, fn}n≥1 be a chain of frames and let P ∗ = 〈P ∗,≤∗〉
be the limit of C . We say that P = 〈P,≤〉 is a stable reduction of P ∗ iff there is a
p-morphism g from P ∗ onto P such that, for every α∗ ∈ P ∗ and every β ∈ P , the
following holds:

- if g(α∗) < β, then there is β∗ ∈ P ∗ s.t. α∗ <∗ β∗, β∗ is stable and g(β∗) = β.

✷

4.2.5 Proposition Let C = {Pn, fn}n≥1 be a chain of frames Pn = 〈Pn,≤n, ρn〉,
let P = 〈P,≤, ρ〉 be a weak limit of C and let P ′ = 〈P ′,≤′, ρ′〉 be a stable reduction
of the limit P ∗ of C . Then there is a p-morphism f from P onto P ′.
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Proof: Let P ∗ = 〈P ∗,≤∗, ρ∗〉 be the limit of C , let h : P→P ∗ be the map defined in
Proposition 4.2.3 and let g : P ∗→P ′ be as in the definition of stable reduction. We
know that h is “almost” a p-morphism, while g is “much more” than a p-morphism;
we show that the composite map f = g ◦ h is a p-morphism. It is immediate to
prove that f is order preserving. Suppose now that g(h(α)) <′ β′, for some α ∈ P

and β′ ∈ P ′. By definition of g, there is β∗ ∈ P ∗ such that β∗ is stable, h(α) <∗ β∗

and g(β∗) = β′. By definition of h, there is β ∈ P such that α < β and h(β) = β∗,
hence g(h(β)) = β′. Finally, g(h(ρ)) = g(ρ∗) = ρ′, thus f is also surjective and the
proposition is proved. ✷

This can be depicted by the commutative diagram in Figure 4.2, where we have put
into evidence the arrows which represent p-morphisms. It follows that any stable
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Figure 4.2: Diagram of weak limits

reduction of the limit of C is representative, in some sense, of all the weak limits of
C ; thus, our Necessary Condition for Strong Completeness can be reformulated in
the following more interesting form.

4.2.6 Theorem (Strong Completeness Criterion)
Let L be a strongly complete logic, let C = {Pn, fn}n≥1 be a chain of finite frames
Pn = 〈Pn,≤n, ρn〉 for L, and let P ′ = 〈P ′,≤′, ρ′〉 be a stable reduction of the limit
P ∗ of C . Then P ′ is a frame for L.

Proof: Since L is strongly complete, by the Necessary Condition for Strong Com-
pleteness there must be a weak limit P = 〈P,≤, ρ〉 of C such that P is a frame for
L. By Proposition 4.2.5, there is a p-morphism from P onto P ′; since P is a frame
for L, we can conclude that also P ′ is a frame for L. ✷

Thus, to disprove the strong completeness of a logic, we can restrict ourselves to
study the stable reductions of the limits. We also point out that the previous
criterion is more general than the corresponding one explained in [15].
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4.3 Strong completeness of the logics in one variable

As an applications of these criteria, we give a detailed classification of the logics in
one variable with respect to canonicity and strong completeness.

4.3.1 The canonical logics in one variable

The first four logics in our enumeration turn out to be canonical, even better, they
are the only canonical logics in the class. The case of classical logic Cl is trivial,
while we have already seen that Jankov logic Jn is hypercanonical (more precisely,
as proved in Theorem 3.1.7, it is QHY P2).

We now analyze the remaining ones.

4.3.1 Theorem The logic NL3,4 is hypercanonical.

Proof: Suppose, by absurd, that NL3,4 is not hypercanonical; then there is a
separable model (with enough final points) K = 〈P,≤,
〉 of NL3,4 whose frame
P = 〈P,≤〉 is not a frame for NL3,4. Then there are α, β, ϕ1, ϕ2 in P such that:

- α < β, α < ϕ2, β < ϕ1, and β 6< ϕ2.

Without loss of generality (by definition of p-morphism) we can assume that ϕ1

and ϕ2 are final points; thus, by the hypothesis of separability of K, there exists a
formula A such that:

- β 
 A and ϕ2 6
 A (hence ϕ2 
 ¬A).

Moreover, since β is not final, there must be a formula B such that:

- β 
 ¬¬B and β 6
 B.

Let us take the formula H = ¬¬A ∧B. Then:

- ϕ2 
 ¬H;

- β 
 ¬¬H and β 6
 H.

This implies that α 6
 ¬¬H ∨ (¬¬H→H), which is an instance of nf 3,4, a contra-
diction. Thus the initial assumption is false and NL3,4 is hypercanonical. ✷

Note that we can prove, in the same way, that NL3,4 is QHY P1; as a matter of fact,
if we assume that K is well separable, it is not necessary to assume that ϕ1 and ϕ2

are final.

To prove the canonicity of the next logic, that is the logic NL4,5, we need addi-
tional properties on the models.

4.3.2 Theorem The logic NL4,5 is extensively canonical.
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Proof: Suppose that, by absurd, such a logic is not extensively canonical; then
there is a well separable model K = 〈P,≤,
〉 of NL4,5 whose frame P = 〈P,≤〉 is
not a frame for NL4,5. This implies that there are some points α, β, ϕ1, ϕ2 of P such
that:

- α < β and α < γ;

- β and γ are two non-final points such that β 6< γ and γ 6< β;

- ϕ1 and ϕ2 are two distinct final points such that γ < ϕ1, γ < ϕ2 and β 6< ϕ2.

By the well separability of K, there are some formulas A,B,C such that:

- β 
 A and ϕ2 6
 A (hence ϕ2 
 ¬A);

- ϕ1 
 B and ϕ2 6
 B (hence ϕ2 
 ¬B);

- γ 
 C and β 6
 C.

Moreover, since β is not final, there is a formula D such that:

- β 
 ¬¬D and β 6
 D.

Let us take the formula H = ¬¬(A ∨B) ∧ (D ∨ C). Then:

- β 6
 ¬¬H→H (indeed, β 
 ¬¬H and β 6
 H);

- γ 
 ¬¬H→H;

- γ 6
 ¬H (indeed, ϕ1 
 H);

- γ 6
 H (indeed, ϕ2 
 ¬H).

It follows that α 6
 (¬¬H→H) ∨ ((¬¬H→H)→H ∨ ¬H), which is an instance of
nf 4,5, a contradiction. This means that the initial hypothesis is false, hence NL4,5

is extensively canonical. ✷

We show that, in the previous proof, the hypothesis of well separability (used to
separate γ from β) is essential.

4.3.3 Theorem The logic NL4,5 is not hypercanonical.

Proof: Let us take a chain of frames C = {Pn, fn}n≥1, where Pn = 〈Pn,≤n, r〉, for
each n ≥ 1, is the frame defined as follows:

- Pn = {r, a, b1, . . . , bn, β, c, d};

- The ordering relation ≤n is defined as in Figure 4.3.

The p-morphism fn from Pn+1 onto Pn is defined as follows:

- fn(bn+1) = β;
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Figure 4.3: The frame Pn for NL4,5.

- fn(δ) = δ for all the other points δ.

It is immediate to check that the frames Pn are frames for NL4,5. Let us consider
the infinite frame P = 〈P,≤, r〉, where:

- P = {r, a, b1, b2, . . . , β, c, d};

- The ordering relation ≤ is defined as in Figure 4.4.
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Figure 4.4: The well separable weak limit P

We point out that, for every n ≥ 1, bn < c and bn 6< β. It is easy to prove that P is
a separable weak limit of C with projections {hn}n≥1 defined as follows:

- hn(bk) = β for every k ≥ n+ 1;
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- hn(δ) = δ for all the other points δ.

Clearly P is not a frame for NL4,5; by the Hypercanonicity Criterion, we can con-
clude that NL4,5 is not hypercanonical. ✷

We observe that, in the previous proof, the frame P is not a well separable weak
limit of C (for instance, it holds that hn(a) ≤n hn(β) for every n ≥ 1, while it is not
true that a ≤ β), as it is expected by the fact that NL4,5 is extensively canonical
and by the Extensive Canonicity Criterion. To obtain a well separable weak limit
with the same projections, we have to put β over all the points bn (clearly, the frame
so obtained is a frame for NL4,5).

4.3.2 The Scott logic St

We have exhausted the examination of the canonical logics in one variable and we
pass to study the infinitely many non canonical ones. We begin with the logic
NL6 = St.

4.3.4 Theorem The logic St is not strongly complete.

Proof: We show a chain C = {Pn, fn}n≥1 of finite frames Pn = 〈Pn,≤n, r〉 for St
such that the frame P σ5

is a stable reduction of the limit P ∗ = 〈P ∗,≤∗, r∗〉 of C 2.
Let Pn be defined as follows:

- Pn = {r, a1, . . . , an, α, b, d1, . . . , dn, δ};

- the ordering relation ≤n is defined as in Figure 4.5.
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Figure 4.5: The frame Pn for St

The p-morhpism fn from Pn+1 onto Pn is defined as follows:

2Such a chain is similar to the one in [15].



4.3. STRONG COMPLETENESS OF THE LOGICS IN ONE VARIABLE 55

- fn(an+1) = α;

- fn(dn+1) = δ;

- fn(β) = β for all the other points β.

The limit model P ∗ contains the stable points r∗n = 〈r, r, . . .〉,
a∗n = 〈α, . . . , α, an, an, . . .〉 (where α occurs in the first n − 1 components and an
in the remaining ones), b∗ = 〈b, b, . . .〉, d∗n = 〈δ, . . . , δ, dn, dn, . . .〉, and the non-stable
points α∗ = 〈α, α, . . .〉 and δ∗ = 〈δ, δ, . . .〉; the ordering relation between these points
is described by Figure 4.6. Finally, let g be the p-morphism from P ∗ onto P σ5
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Figure 4.6: The limit frame P ∗

defined as follows:

- g(d∗n) = σ1, for every n ≥ 1;

- g(α∗) = g(b∗) = g(δ∗) = σ2;

- g(a∗n) = σ3, for every n ≥ 1;

- g(r∗) = σ5.

By definition of g, P σ5
is a stable reduction of P ∗; we can apply the Strong Com-

pleteness Criterion and claim that St is not strongly complete. ✷

We point out that, if we are only interested in disproving the canonicity of St, we
can limit ourselves to observe that the limit P ∗ of C is not a frame for St and then
apply the Canonicity Criterion. We take advantage of this example to observe that,
in general, the limit of a chain C does not inherit the first-order properties which
hold in all frames Pn of C . As a matter of fact, in all Pn there is a final point, that
is δ, which is an immediate successor of three distinct points of Pn, and this can be
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expressed by a first-order sentence; on the other hand, the limit P ∗ of C does not
enjoy this property.
Finally, we observe that all the frames involved in the previous proof have depth 3;
thus we can trivially extend the previous result to the family of logics St + Bdh,
with h ≥ 3, having, as frames, the frames for St with depth at most h. More
precisely:

4.3.5 Theorem
(i) The logics St + Bdh, for h < 3, are hypercanonical.

(ii) The logics St + Bdh, for h ≥ 3, are not strongly complete.

Proof:
(i) Let K = 〈P,≤,
〉 be a separable model of St + Bdh, with h < 3. Then the
frame P of K has depth at most 2, otherwise an instance of bdh is not valid in K;
this implies that all the final points of P are prefinally connected, thus P is also a
frame for St.
(ii) It is proved as Theorem 4.3.4, observing that the frames of the chain C are
frames for the logic St + Bdh. ✷

4.3.3 The logics NLm+1 (m ≥ 7) and NLn+1,n+2 (n ≥ 4)

By the fact that the frames P σm
and P σn,n+1

, for m ≥ 7 and n ≥ 4, contain P σ5

as generated subframe, we can extend without great effort the proof of non strong
completeness of St to the logics NLm+1 and NLn+1,n+2 (namely, the logics in one
variable strictly included in St).

4.3.6 Theorem
(i) The logics NLm+1, for m ≥ 7, are not strongly complete.

(ii) The logics NLm+1,m+2, for m ≥ 4, are not strongly complete.

Proof:
(i) Let m ≥ 7; we define a chain C = {Pn, fn}n≥1 of finite frames Pn = 〈Pn,≤n, tm〉
for NLm+1 such that P σm

is a stable reduction of the limit P ∗ = 〈P ∗,≤∗, t∗m〉 of C .
Let P ′

n = 〈P ′
n,≤

′, t5〉 be the frame defined as the frame Pn in the proof of Theo-
rem 4.3.4, where t5 coincides with r; then the frame Pn is defined as in Figure 4.7.
The p-morphism fn is defined as in the proof of Theorem 4.3.4 on the points β > t5
and fn(β) = β if β is one of the points tk. Finally, the limit frame P ∗ of C is
defined as in Figure 4.8, where P ′∗ coincides with the limit frame in the proof of
Theorem 4.3.4. It is not difficult to prove that P σm

is a stable reduction of P ∗,
therefore, by the Strong Completeness Criterion, NLm+1 is not strongly complete.
(ii) We can proceed as in (i) taking, as frame Pn = 〈Pn,≤n, t〉 for the logic
NLm+1,m+2 (m ≥ 4), the one in Figure 4.9 The p-morphisms fn and the limit
P ∗ = 〈P ∗,≤∗, t∗〉 are defined similarly to in (i). Let us consider the frame P σ̃m

in Figure 4.10. It is immediate to prove that P σ̃m
is a stable reduction of P ∗ and
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Figure 4.7: The frame Pn for NLm+1

that P σ̃m
is not a frame for NLm+1,m+2. We can conclude that NLm+1,m+2 is not

strongly complete. ✷

As in the proof relative to St, the frames used in the previous proof have minimal
depth, in the sense of next theorem.

4.3.7 Theorem
(i) Let m ≥ 7 and let hm = depth(P σm

). Then:

- for 1 ≤ h < hm, NLm+1 + Bdh is hypercanonical;

- for h ≥ hm, NLm+1 + Bdh is not strongly complete.

(ii) Let m ≥ 4 and let km = depth(P σm,m+1
) + 1. Then:

- for 1 ≤ h < km, NLm+1,m+2 + Bdh is hypercanonical;

- for h ≥ km, NLm+1,m+2 + Bdh is not strongly complete.

Proof:
(i) Let K be a model of the logic NLm+1 + Bdh, with h < hm. Then K has at
most depth h, hence, noticing that P σm

has depth hm, we have that the frame of K
is a frame for the logic NLm+1 + Bdh. If h ≥ hm, we can reason as in the proof of
Theorem 4.3.6, observing that all the frames of the chain C have depth hm, hence
they are frames for Bdh.
(ii) It is proved as (i). ✷
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Figure 4.8: The limit frame P ∗

Note that the depth of the frames P σn
and P σm,m+1

can be computed in the following
way:

depth(P σn
) = (n+ 1) Div 2

depth(P σm,m+1
) = depth(P σm+1

) = (m+ 1) Div 2

where Div denotes the integer division.

4.3.4 The Anti-Scott logic Ast

It only remains to analyze the logic NL7 = Ast (not included in St) which has a
peculiar behaviour.

4.3.8 Theorem The logic Ast is not strongly complete.

Proof: Let us consider the chain C = {Pn, fn}n≥1 of finite frames Pn = 〈Pn,≤n, a1〉
for Ast such that, for every n ≥ 1, the following holds3:

- Pn = {a1, . . . , an+1, α, e, b1, . . . , bn, β, g, d1, . . . , dn, δ};

- the ordering relation is defined as in Figure 4.11.

The p-morhpism fn from Pn+1 onto Pn is defined as follows:

- fn(an+2) = α;

- fn(bn+1) = β;

3The chain C is the same as the one in [15].
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Figure 4.9: The frame Pn for NLm+1,m+2

- fn(dn+1) = δ;

- fn(γ) = γ for all the other points γ.

The limit model P ∗ contains the stable points a∗n = 〈α, . . . , α, an, an, . . .〉,
b∗n = 〈β, . . . , β, bn, bn, . . .〉, d

∗
n = 〈δ, . . . , δ, dn, dn, . . .〉, e

∗ = 〈e, e, . . .〉,
g∗ = 〈g, g, . . .〉 and the non-stable points α∗ = 〈α, α, . . .〉, β∗ = 〈β, β, . . .〉, δ∗ =
〈δ, δ, . . .〉; the ordering relation is described by Figure 4.12. Let us define a p-
morphism g from P ∗ onto P σ6

as follows:

- g(β∗) = g(g∗) = g(δ∗) = σ1;

- g(d∗n) = σ2, for every n ≥ 1;

- g(α∗) = g(e∗) = σ3;

- g(b∗n) = σ4, for every n ≥ 1;

- g(a∗n) = σ6, for every n ≥ 1.

By definition of g, P σ6
is a stable reduction of P ∗; thus, by the Strong Completeness

Criterion, Ast is not strongly complete. ✷

We observe that the chain used to disprove the canonicity of Ast contains frames
of increasing depth, so that the limit has infinite depth. We may wonder whether we
can use chains of frames of bounded depth, as in the case of the other non canonical
logics in one variable. The answer is negative since, if we fix an upper bound on the
depth of the frames, we obtain canonical logics. This fact is not surprising since,
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Figure 4.10: The frame P σ̃m

using suitable filtration techniques (for instance, the ones explained in [8]), one can
prove that the logic Ast + Bdh is characterized by the class of frames for Ast
with depth at most h and, as seen in Proposition 2.5.4, such a class is first-order
definable; thus, by Van-Benthem Theorem (Theorem 1.7.3), the canonicity of such
a logic follows.

Nevertheless, here we give a direct proof, which enables us to get a more refined
classification.

4.3.9 Theorem The logics Ast + Bdh, for h ≤ 3, are hypercanonical.

Proof: We only consider the non trivial case of the logic L = Ast + Bd3. Let
K = 〈P,≤,
〉 be a model of the logic L; we show that the frame P = 〈P,≤〉 is a
frame for L. We immediately have that P is a frame for Bd3; let us suppose that
P is not a frame for Ast. Then there are some points α, β, γ, ϕ1, ϕ2, ϕ3 in P such
that:

- β and γ are two distinct immediate successors of α;

- ϕ1, ϕ2 and ϕ3 are final points of P such that ϕ2 6= ϕ1 and ϕ2 6= ϕ3;

- β < ϕ1, γ < ϕ2, γ < ϕ3 and β 6< ϕ2.

Let V be a finite set of propositional variables such that the points α, β, γ, ϕ1, ϕ2, ϕ3

are pairwise V -separated, with the only exception that ΓV
K(ϕ1) may coincide with

ΓV
K(ϕ3); in particular, we can assume that there is a V -formula A such that β 
 A

and ϕ2 6
 A. Let KV be the quotient model of K with respect to the V -formulas
and, for each δ ∈ P , let us denote with δV the class to which δ belongs (see also
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Figure 4.11: The frame Pn for Ast

Section 1.8). We note that, in KV , αV < βV < ϕ1V , αV < γV , γV < ϕ2V and
γV < ϕ3V ; it follows that ϕ1V , ϕ2V and ϕ3V are final, βV and γV have depth 2 and
αV has depth 3, thus βV and γV are immediate successors of αV . Moreover, since
KV is a V -separable finite model of Ast, the frame of KV is a finite frame for Ast.
By Proposition 2.5.4, since γV sees more than one final point, βV and γV (which
are not final) must see the same final points, hence βV < ϕ2V . This gives rise to
a contradiction, since β 
 A and ϕ2 6
 A in K, which implies that βV 
 A and
ϕ2V 6
 A in KV . We can conclude that P is also a frame for Ast. ✷

If we now try to repeat the reasoning for the logics Ast + Bdh, with h ≥ 4,
we encounter some difficulties. Indeed, a key point of the proof is that βV is an
immediate successor of αV in KV . Nevertheless, it is not in general true that, if β is
an immediate successor of α in K, then, for some finite set V , βV is an immediate
successor of αV in KV , even if K is full. Thus, to overcome the problem, more effort
is required and the proof is rather involved.

4.3.10 Theorem The logics Ast + Bdh, for h ≥ 4, are canonical.

Proof: Let us suppose that, for some h ≥ 4, the logic L = Ast + Bdh is not
canonical. Then there is a full model K = 〈P,≤,
〉 of L such that P = 〈P,≤〉 is
not a frame for L. As in the proof of Theorem 4.3.9, since evidently P is a frame
for Bdh, we can assume that there are α, β, γ, ϕ1, ϕ2, ϕ3 in P such that:

- β and γ are two distinct immediate successors of α;
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Figure 4.12: The limit frame P ∗

- ϕ1, ϕ2 and ϕ3 are final points of P such that ϕ2 6= ϕ1 and ϕ2 6= ϕ3;

- β < ϕ1, γ < ϕ2, γ < ϕ3 and β 6< ϕ2.

Let us consider an increasing sequence of finite sets of propositional variables Vn,
for n ≥ 1, whose union is the set of all the variables; let Kn = 〈Pn ≤n,
n〉 be
the quotient model of K with respect to the Vn-formulas and let fn be the map
which associates, with each point α in Kn+1, the (unique) point of Kn in the same
Vn-equivalence class. Since each Kn is finite, we have that CK = {Kn, Vn, fn}n≥1 is
a chain having limit K, with projections {hn}n≥1 defined in an obvious way. By the
well separability of K and by the fact that α has finite depth, we can assume that
there is n ≥ 1 such that, for every j ≥ n, the following properties hold:

(P1) for any two distinct points δ1, δ2 in the set {α, β, γ, ϕ1, ϕ2, ϕ3}, hj(δ1) 6= hj(δ2),
with the only exception that hj(ϕ1) may coincide with hj(ϕ3).

(P2) It is not true that hj(β) <j hj(ϕ2).

(P3) The depth of hj+1(α) in Kj+1 does not exceed the depth of hj(α) in Kj .

We observe that, for each n ≥ 1, Pn is a finite frame for Ast; moreover, for j ≥ n,
it is not the case that all the immediate successors of hj(α) see only one final point
of Kj (for instance, if δ is an immediate successor of hj(α) such that δ ≤j hj(γ),
then δ sees at least the two distinct final points hj(ϕ2) and hj(ϕ3)); thus, all the
non-final immediate successors of hj(α) see the same final points. In particular:
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(P4) for every j ≥ n, for every non-final immediate successor δ of hj(α) in Kj , it
holds that δ <j hj(ϕ2).

Now we show that:

(P5) There is m ≥ n such that hm(β) is an immediate successor of hm(α) in Km.

Suppose that (P5) does not hold; then, for every j ≥ n, the set

Dj = {δ ∈ Pj : hj(α) <j δ <j hj(β) and δ <j hj(ϕ2)}

is nonempty. Moreover, it holds that:

(P6) For every j ≥ n and every δ ∈ Dj+1, fj(δ) ∈ Dj .

Indeed, since hj = fj ◦hj+1, we immediately have that hj(α) ≤j fj(δ) ≤j hj(β) and
fj(δ) <j hj(ϕ2). By (P2), it follows that fj(δ) 6= hj(β); moreover, it is not true that
fj(δ) = hj(α), otherwise, by definition of p-morphism, hj+1(α) would have depth
greater than the one of hj(α), in contradiction with (P3). Thus fj(δ) ∈ Dj and
(P6) holds. By (P6) an by the fact that each Dj is finite, we can choose an infinite
sequence of points δn ∈ Dn, δn+1 ∈ Dn+1, . . . such that:

(∗) δn = fn(δn+1), δn+1 = fn+1(δn+2), · · ·

As a matter of fact, we can see the elements of the sets Dj , for every j ≥ n, as
the nodes of a tree T , where δj+1 is an immediate successor of δj if and only if
δj = fj(δj+1) (we also have to add a root τ having, as immediate successors, all
the elements of Dn). Since T has infinitely many nodes and each node of T has
finitely many immediate successors, by König Lemma (see for instance [21]) T has
an infinite branch; clearly the points δn, δn+1, . . . of this branch satisfy (*). Such a
sequence generates a point δ∗ of the limit K of CK such that α < δ∗ < β, against
the fact that β is an immediate successor of α in K. Thus (P5) is proved. By (P5)
and (P4) we get that hm(β) <m hm(ϕ2), in contradiction with (P2). This means
that the initial hypothesis is false, hence L is canonical. ✷

We conclude by showing that the logics Ast + Bdh, for every h ≥ 4, are not
extensively canonical. Let L be any logic of such a family and let us take the chain
C = {Pn, fn}n≥1 defined as follows (see also Figure 4.13).

• For every n ≥ 1, Pn = 〈Pn,≤n, r〉 is the frame such that:

- Pn = {r, a1, . . . , an, α, b1, . . . , bn, β, g1, . . . , gn, γ}.

- The immediate successors of the root r are a1, . . . , an, α.

- For every 1 ≤ k ≤ n, the immediate successors of ak are g1, . . . , gk−1 (if
k 6= 1) and bk.

- The immediate successors of α are g1, . . . , gn and β.
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Figure 4.13: The frame Pn for Ast + Bdh

- For every 1 ≤ k ≤ n, the immediate successors of bk are gk, . . . , gn, γ.

- The only immediate successor of β is γ.

- g1, . . . , gn, γ are final points of Pn.

• The p-morphism fn from Pn+1 onto Pn is defined as follows.

- fn(an+1) = α.

- fn(bn+1) = β.

- fn(gn+1) = γ.

- fn(δ) = δ for all the other points δ.

It is easy to check that Pn is a frame for Ast (note that the immediate successors
of r see all the final points of Pn); moreover, since depth(Pn) = 4, we can state that
Pn is a frame for L. Let P = 〈P,≤, r〉 be the infinite frame defined as follows (see
Figure 4.14).

- P = {r, a1, a2, . . . , b1, b2 . . . , β, g1, g2, . . . , γ}.

- The immediate successors of the root r are the points an, for every n ≥ 1, and
β.

- For every n ≥ 1, the immediate successors of an are g1, . . . , gn−1 (if n 6= 1)
and bn.

- For every n ≥ 1, the immediate successors of bn are the points gk, for every
k ≥ n, and γ.
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- The only immediate successor of β is γ.

- The points gn, for every n ≥ 1, and γ are final.
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Figure 4.14: The well separable weak limit P

We claim that P is a well separable weak limit of C having projections {hn}n≥1

defined as follows:

- hn(ak) = α for every k ≥ n+ 1.

- hn(bk) = β for every k ≥ n+ 1.

- hn(gk) = γ for every k ≥ n+ 1.

- hn(δ) = δ for all the other points δ.

Since evidently P is not a frame for Ast, by the Extensive Canonicity Criterion
we can deduce that L is not extensively canonical. Clearly P is not isomorphic to
the limit of C since, taking the points α ∈ P1, α ∈ P2, . . . we have that hn(α) = α

for every n ≥ 1, but there is not any point δ of P such that hn(δ) = α for all
n ≥ 1. To obtain the limit, we have to insert in P a point α such that α is an
immediate successor of r and β, g1, g2, . . . are all the immediate successors of α,
as in Figure 4.15. One can also check that such a frame is actually a frame for
L, according to the fact that L is canonical and to the Canonicity Criterion. This
example is particularly interesting, since it shows that extensive ω-canonicity does
not imply extensive canonicity; indeed, all the logics Ast + Bdh are extensively
ω-canonical, due to the fact that, for every finite V , the well V -separable models of
such logics are finite (see Proposition 1.9.8).

To sum up:
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Figure 4.15: The limit P ∗

4.3.11 Corollary
(i) The logics Ast + Bdh, for h ≤ 3, are hypercanonical.

(ii) The logics Ast + Bdh, for h ≥ 4, are canonical, extensively ω-canonical but
not extensively canonical.

✷

4.4 Non extensive canonicity of Medvedev logic

As a minor application of our criteria, we show that MV is not extensively canonical;
to obtain stronger results, we need a more careful knowledge of the semantics of
MV. Let, for each n ≥ 1, Xn = {1, . . . , n} and let us consider the chain of frames
C = {Pn, fn}n≥1 defined as follows:

- Pn is the MV -frame determined by Xn (see Figure 4.16);

- for every Y ∈ Pn+1, fn(Y ) = {sn(y) : y ∈ Y }

where sn(y) = y if y ≤ n, sn(y) = n otherwise. Note that, due to the special
definition of MV -frame, the possible p-morphisms from Pn+1 onto Pn are trivial
permutations of fn. Let X+ = N∪{ω} (where N is the set of natural numbers) and
let P = 〈P,≤〉 be the frame defined as follows:

- P = {Xn : n ≥ 1} ∪ {{ω}} ∪ {X+}.

- For every Y, Z ∈ P , Y ≤ Z iff Z ⊆ Y .
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Figure 4.16: The MV -frame Pn

Note that X+ is the root of P and {ω} is the only immediate successor of X+ (see
Figure 4.17). We claim that P is a well separable weak limit of C with projections
{hn}n≥1 defined as follows:

- for every Y ∈ P , hn(Y ) = {s+n (y) : y ∈ Y }

where s+n (y) = sn(y) if y ∈ N, and s+n (ω) = n. Clearly, P is not a frame for MV;
as a matter of fact, P is neither a frame for St nor a frame for KP (we recall that
both these logics are contained in MV). By the Extensive Canonicity Criterion, we
can conclude that:

4.4.1 Theorem The Medvedev logic MV is not extensively canonical. ✷

Note that, to obtain the limit P ∗ of C , we have to add all the sets of the kind
Xn ∪ {ω}; we can apply Proposition 1.3.1 and state that P ∗ is a frame for MV.
Thus, we cannot use this kind of chains in order to disprove the canonicity of MV,
and the question, as far as we know, remains open.

4.5 Non canonicity of the logic of rhombuses

In this section, we prove that the logic of rhombuses is not canonical. Let T+ be lin-
early ordered set {1, 2, . . . , n, . . . , ω}. We define a chain of frames C = {Pn, fn}n≥1,
where Pn is the RH-frame defined on the linear ordering Tn = {1, 2, . . . , n, ω} (see
Figure 4.18); the p-morphism fn from Pn+1 onto Pn is defined in an obvious way.
More precisely, let gn be the map on the integers defined as follows:
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Figure 4.17: The well separable weak limit P

- gn(k) = k if k ≤ n;

- gn(k) = ω if k > n.

Then:

- fn([k, l]) = [gn(k), gn(l)].
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Figure 4.18: The RH-frame Pn

The limit P ∗ = 〈P ∗,≤∗〉 of C is isomorphic to the frame P = 〈P,≤〉 defined as
follows (see Figure 4.19):

- P = {[a, b] : a, b ∈ T+ and a ≤ b};
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Figure 4.19: The limit P

- [a, b] ≤ [c, d] iff [c, d] ⊆ [a, b].

We point out that [1, ω] is the root of P and the stable points of P are the ones of
the kind [a, b] with b < ω. It is easy to see that P is not a frame for St, indeed we
can define a p-morphism g from P onto P σ5

as follows:

- g(k) = σ1 if k < ω (where k, as usual, denotes the interval [k, k]).

- g(ω) = σ2.

- g([k, l]) = σ3 if k 6= l and l 6= ω.

- g([k, ω]) = σ5 if k 6= ω.

We stress that g is not a V -stable reduction and, with this kind of chains, it seems
difficult to find a counterexample which allows us to apply the Strong Completeness
Criterion. In the present case, for instance, we can even find a weak limit P ′ of C

which is a frame for RH. As a matter of fact, let P ′ be the subframe of P obtained
by considering the point [1, ω] and all the stable points of P (see Figure 4.20).
Then, it is easy to check that P ′ is a (well separable) weak limit of C . Moreover, it
is immediate to see that P ′ has the filter property, therefore, by Proposition 1.3.1,
P ′ is a frame for RH. Thus, as a consequence of Proposition 4.2.5, all the stable
reductions of the limit P of C are frames for RH. Also in this case, to strengthen
the result, we need more knowledge about the semantics of RH.
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Chapter 5

Analysis of ω-Canonicity

This chapter presents the most original results of the thesis. We give a crite-
rion for the strong ω-completeness and we apply it in order to prove the following
remarkable result, which considerably improves the one stated at the beginning of
previous chapter:

• All the intermediate logics axiomatized by axioms in one variable, except eight
of them, are not strongly ω-complete.

This completes the classification of the logics in one variable.

To state such results, we could adapt the arguments of the previous chapter to
the context of strong ω-completeness (a similar approach is followed in [15]). Indeed,
we can reformulate the notions explained in the previous chapter and relativize them
to the V -formulas. More precisely: we can define the notion of V -chain, the various
notions of V -limit, and so on; then, the ω-canonicity and strong ω-completeness
criteria become formally similar to the canonicity and strong completeness criteria
respectively. On the other hand, in the definition of V -chain, the map fn from Pn+1

onto Pn cannot be simply a p-morphism, but has to satisfy stronger properties;
this is due to the fact that it is not sufficient that fn preserves the V -formulas,
but we need the stronger requirement that fn preserves the V -formulas “up to the
implicational complexity n”. The drawback in this approach is that the construction
of counterexamples, by means of V -chains, becomes rather involved; we are not even
sure that, following this method, we are able to build the complex countermodels
used in this chapter (incidentally, we point out that this technique is used in [15]
only to disprove the strong ω-completeness of the logics Tn).

Our approach is completely different and more loose: instead of building a V -
separable and V -full model K by means of a V -chain, we directly define the coun-
termodel K (which is in general a “big” model) and successively we take care to

71
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prove the V -separability and the V -fullness of K. At this aim, we classify the points
of K using the notion of V -grade, which allows us to check the V -fullness of K.
Roughly speaking, suppose that K is a V -full model and suppose that K coincides
with the limit of a V -chain of models C V

K ; then the points of finite V -grade repre-
sent the “stable” points of K, while the points of infinite V -grade correspond to the
“instable” points of K. As in the framework of strong completeness, this distinction
is crucial for the analysis of strong ω-completeness. The material of this chapter is
almost entirely reported in [10].

5.1 Some conditions about strong ω-completeness

We now tackle the problem of ω-canonicity and strong ω-completeness. As a key
tool in describing models, we introduce the relations 4V

n and ∼V
n .

5.1.1 Definition Let V be a finite set of propositional variables; let K = 〈P,≤,
〉
and K ′ = 〈P ′,≤′,
′〉 be (non necessarily different) Kripke models. Then the rela-
tions 4V

n and ∼V
n between points of K and K ′ are defined, inductively on n ≥ 0, by

the following conditions. Let α ∈ P and α′ ∈ P ′; then:

- α 4V
0 α′ iff, for all p ∈ V , α 
 p implies α′ 
′ p.

- α ∼V
0 α′ iff α 4V

0 α′ and α′ 4V
0 α.

- α 4V
n+1 α

′ iff, for all β′ ∈ P ′ such that α′ ≤′ β′, there is β ∈ P such that α ≤ β

and β ∼V
n β′.

- α ∼V
n+1 α

′ iff α 4V
n+1 α

′ and α′ 4V
n+1 α.

✷

It is easy to see that α 4V
n α′ implies α 4V

k α′ for every k ≤ n; hence, α ∼V
n α′

implies α ∼V
k α′ for every k ≤ n. We remark that, for every n ≥ 0, ∼V

n is an
equivalence relation having finitely many equivalence classes.

5.1.2 Definition Let A be any formula. The implicational complexity Ic(A) of
A is defined, by induction on the (structural) complexity of A, by the following
conditions.

- Ic(A) = 0 if A is atomic.

- Ic(A) = max{Ic(B), Ic(C)} if either A = B ∧ C or A = B ∨ C.

- Ic(B→C) = max{Ic(B), Ic(C)} + 1.

- Ic(¬A) = Ic(A) + 1.

✷
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For a model K = 〈P,≤,
〉 and a finite set V , ΓV,n
K (α) (or simply ΓV,n(α) if the

context is clear) denotes the set of V -formulas of implicational complexity r ≤ n

forced in α.
A remarkable point is that the equivalence classes [α]∼V

n
of the relations ∼V

n are
characterized by formulas Hn

α of implicational complexity at most n (see also [16]);
we give a proof of this fact in next lemma. To simplify the statement of the lemma,
we assume to have ⊤ and ⊥, intuitionistically equivalent to p→ p and ¬(p→ p)
respectively, as primitive atomic symbols of the language; moreover, we say that
two formulas A and B essentially coincides if B is obtained from A by trivial per-
mutations between the formulas C1 and C2 in subformulas of A of the kind C1 ∧C2

and C1 ∨ C2.

5.1.3 Lemma Let K = 〈P,≤,
〉 be a Kripke model and let V be a finite set of
propositional variables. For every n ≥ 0 and every α ∈ P , there is a V -formula Hn

α

such that:

(1) Ic(Hn
α) ≤ n;

(2) For every K ′ = 〈P ′,≤′,
′〉 and every α′ ∈ P ′, if α′ ∼V
n α then Hn

α′ essentially
coincides with Hn

α ;

(3) For every K ′ = 〈P ′,≤′,
′〉 and every α′ ∈ P ′, α′ 
′ Hn
α iff α 4V

n α′.

Proof: By induction on n. Suppose n = 0. If α does not force any p ∈ V , we can
set H0

α = ⊤ and the lemma is satisfied (indeed, α 4V
0 α′ for all α′); otherwise we

take:

H0
α =

∧

p∈V :α
p

p.

Suppose now, by the induction hypothesis, that the lemma holds for n. Let, for any
α ∈ P :

S (α) = {β : β is any point of any Kripke model and,
for every δ ∈ P , α ≤ δ implies β 6∼V

n δ};
S ′(α) = {β : β is any point of any Kripke model and β 64V

n α}.

If S (α) = ∅, then α 4V
n+1 α

′ for every α′ and, as before, we can set Hn+1
α = ⊤.

Otherwise, we define:

Hn+1
α =

∧

β∈S (α)

(Hn
β −→

∨

δ∈S ′(β)

Hn
δ ∨ ⊥).

We remark that, in the above formula, we assume to take only one characteristic for-
mula in correspondence of ∼V

n -equivalent points in S (α) and in S ′(β) respectively.
By the fact that there are finitely many non equivalent points with respect to ∼V

n

and by the induction hypothesis, it immediately follows that Hn+1
α is a well defined
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V -formula which satisfies (1) and (2). In order to prove (3), let K ′ = 〈P ′,≤′,
′〉
be any Kripke model and let α′ ∈ P ′. Suppose that α 4V

n+1 α′; we prove that
α′ 
′ Hn+1

α . Take any δ′ ∈ P ′ such that:
- α′ ≤′ δ′;
- δ′ 
′ Hn

β for some β ∈ S (α).

By the induction hypothesis, β 4V
n δ′. Suppose now that δ′ 4V

n β. Then δ′ ∼V
n β

and, since α 4V
n+1 α

′ and α′ ≤′ δ′, there is δ ∈ P such that α ≤ δ and δ ∼V
n δ′.

This implies that δ ∼V
n β, against the fact that β ∈ S (α); thus δ′ 64V

n β, that is
δ′ ∈ S ′(β). Since δ′ 
′ Hn

δ′ (by the induction hypothesis, being δ′ 4V
n δ′), we get:

α′ 
′ Hn
β −→

∨

δ∈S ′(β)

Hn
δ ∨ ⊥.

By the generality of δ′ and β, it follows that α′ 
′ Hn+1
α .

Suppose now that α 64V
n+1 α

′. There is β′ ∈ P ′ such that:
- α′ ≤′ β′;
- for every δ ∈ P such that α ≤ δ, β′ 6∼V

n δ.
By the induction hypothesis, we have:
- β′ 
′ Hn

β′ ;

- δ ∈ S ′(β′) implies β′ 6
′ Hn
δ (in fact, δ 64V

n β′).
Note that S ′(β′) may be empty. Therefore:

α′ 6
′ Hn
β′ −→

∨

δ∈S ′(β′)

Hn
δ ∨ ⊥.

Since, by the above assumptions, β′ ∈ S (α), we can conclude that α′ 6
′ Hn+1
α . ✷

Now we show that the ∼V
n equivalences preserve the forcing of V -formulas up to the

implicational complexity n.

5.1.4 Proposition Let K = 〈P,≤,
〉 and K ′ = 〈P ′,≤′,
′〉 be any two Kripke
models, and let V be a finite set of propositional variables. Then, for every α ∈ P ,
α′ ∈ P ′ and every n ≥ 0, it holds that:

(i) α 4V
n α′ if and only if ΓV,n

K (α) ⊆ ΓV,n

K′ (α′).

(ii) α ∼V
n α′ if and only if ΓV,n

K (α) = ΓV,n

K′ (α′).

Proof: (i) Firstly we show that, for every point α of K and α′ of K ′ and for every
V -formula A, the following property holds:

(*) α 
 A and Ic(A) ≤ n and α 4V
n α′ implies α′ 
′ A.

We proceed by induction on the structure of A. If A is atomic then, by the fact
that α 4V

0 α′, (*) immediately follows. If A = B ∧ C or A = B ∨ C, (*) follows
from the induction hypothesis. Let us suppose that A = B→C and α′ 6
′ B→C.
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Then there is β′ ≥′ α′ such that β′ 
′ B and β′ 6
′ C. Let β ∈ P be such that
α ≤ β and β ∼V

n−1 β
′, that is β 4V

n−1 β
′ and β′ 4V

n−1 β. Since Ic(B) ≤ n − 1
and Ic(C) ≤ n − 1, we can apply the induction hypothesis and state that β 
 B

and β 6
 C, thus α 6
 B → C and (*) is proved. It follows that α 4V
n α′ implies

ΓV,n
K (α) ⊆ ΓV,n

K′ (α′). Conversely, let us suppose that α 64V
n α′. By Lemma 5.1.3, it

holds that α 
 Hn
α and α′ 6
 Hn

α , thus ΓV,n
K (α) 6⊆ ΓV,n

K′ (α′), and this completes the

proof of (i).
(ii) It is an immediate consequence of (i). ✷

5.1.5 Definition Let K = 〈P,≤,
〉 be a Kripke model, let V be a finite set of
propositional variables and let α ∈ P . We say that α has V -grade r (in K) iff r is
the minimum k ≥ 0 such that the following condition holds:

- for every β ∈ P , β ∼V
k α implies β = α.

✷

We say that a point α of K has finite V -grade if it has V -grade r ≥ 0; otherwise, α
has infinite V -grade. We remark that if α has V -grade r in K, then α has V -grade
r′ ≤ r in any generated submodel K ′ of K in which α is defined; on the other hand,
a point having infinite V -grade in K may have finite V -grade in some generated
submodel of K. Note also that a final point of a V -separable model K has V -grade
0 or 1; it follows that, for every δ, δ′ in K, δ ∼V

2 δ′ implies Fin(δ) = Fin(δ′).

5.1.6 Proposition Let K = 〈P,≤, ρ,
〉 be a V -separable and V -full Kripke model
(V finite) and let K ′ = 〈P ′,≤′, ρ′,
′〉 be any Kripke model such that ΓV

K′(ρ′) =

ΓV
K(ρ). Then there is a map h : P ′→P such that:

(i) h(ρ′) = ρ;

(ii) α′ ≤′ β′ implies h(α′) ≤ h(β′);

(iii) if h(α′) ≤ β and β has finite V -grade in K, there is β′ ∈ P ′ s.t. α′ ≤′ β′ and
h(β′) = β.

Proof: Let α′ be any point of P ′; then ΓV
K′(ρ′) ⊆ ΓV

K′(α′), hence ΓV
K(ρ) ⊆ ΓV

K′(α′).
Since K is V -full and V -separable, there is one and only one α ∈ P such that
ΓV
K(α) = ΓV

K′(α′). So we are allowed to define h : P ′→P as follows:

h(α′) = α if and only if ΓV
K(α) = ΓV

K′(α′)

(note that α′ ∼V
k h(α′) for every k ≥ 0). Obviously h(ρ′) = ρ; moreover, since K

is well V -separable, (ii) immediately follows. Suppose now that h(α′) ≤ β and that
β has finite V -grade r ≥ 0 in K. Since h(α′) ∼V

r+1 α
′, there is β′ ∈ P ′ such that

α′ ≤′ β′ and β ∼V
r β′. Since β′ ∼V

r h(β′), it follows that β ∼V
r h(β′); but β has

V -grade r in K, hence β = h(β′) and (iii) is proved as well. ✷
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We point out that h may be non-surjective; indeed, the points of K of infinite V -
grade may not have any preimage in K ′ (while all the points of finite V -grade have
at least one preimage); moreover, if K ′ is not V -separable, h is not injective.
As far as the V -separability of points of finite V -grade is concerned, we can assert:

5.1.7 Lemma Let K = 〈P,≤,
〉 be a Kripke model and let α be a point of K of
finite V -grade in K. Then, for every β ∈ P , ΓV

K(α) = ΓV
K(β) implies α = β.

Proof: If ΓV
K(α) = ΓV

K(β), then α ∼V
k β for every k ≥ 0. Let r ≥ 0 be the V -grade

of α; since α ∼V
r β, it holds that α = β. ✷

By this lemma, we can give the following condition on V -separability.

5.1.8 Proposition Let K = 〈P,≤,
〉 be a Kripke model and let V be a finite set
of propositional variables. K is V -separable if and only if, for every α, β ∈ P of
infinite V -grade, ΓV

K(α) = ΓV
K(β) implies α = β. ✷

In order to give a condition for the V -fullness, we introduce the notion of V -
sequence.

5.1.9 Definition Let K = 〈P,≤,
〉 be a Kripke model and let V be a finite set of
propositional variables. A V -sequence {βk}

V
k≥0 of K is a sequence of points βk ∈ P

such that βk ∼V
k βk+1 for every k ≥ 0.

We say that β ∈ P is a limit of the V -sequence {βk}
V
k≥0 if and only if β ∼V

k βk for
every k ≥ 0. ✷

We stress that the point βk of a V -sequence can be viewed as an approximation of
β (with respect to the forcing of V -formulas) up to the V -formulas of implicational
complexity k. We also remark that, if K is V -separable, then the limit is unique.
The necessary and sufficient condition for the V -fullness is stated in the following
theorem.

5.1.10 Proposition Let K = 〈P,≤,
〉 be a Kripke model and let V be a finite set
of propositional variables. Then K is V -full if and only if, for every cone Kα of K ,
every V -sequence {βk}

V
k≥0 of Kα has a limit in Kα.

Proof: Suppose that K is V -full; let Kα be a cone of K and let {βk}
V
k≥0 be a

V -sequence of Kα. Let us consider the set:

∆V =
⋃

k≥0

ΓV,k
K (βk).

Then ∆V is a V -saturated set and ΓV
K(α) ⊆ ∆V ; by the V -fullness of K, there is

β ∈ P such that α ≤ β and ΓV
K(β) = ∆V . By definition of V -sequence, ΓV,k

K (βk) =

ΓV,k
K (βk+j) for every k, j ≥ 0, which implies that ΓV,k

K (β) = ΓV,k
K (βk) for every k ≥ 0,
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hence β ∼V
k βk for every k ≥ 0. We can conclude that the point β of Kα is a limit

of the V -sequence {βk}
V
k≥0.

Conversely, let us suppose that K satisfies the condition on V -sequences; let α be
any point of K and let ∆V be a V -saturated set such that ΓV

K(α) ⊆ ∆V . Let

K∗ = 〈P ∗,≤∗, ρ∗,
∗〉 be a V -full model such that ΓV
K∗(ρ∗) = ΓV

K(α) (for instance,
we can take the cone of the V -canonical model for Int generated by the V -saturated
set ΓV

K(α)); by the V -fullness of K∗, there is β∗ in P ∗ such that ΓV
K∗(β∗) = ∆V .

Since ΓV
K∗(ρ∗) = ΓV

K(α), it holds that:

ρ∗ ∼V
k α for every k ≥ 0.

By the properties of the relations ∼V
k , we can determine a sequence of points βk of

Pα such that:

β∗ ∼V
k βk for every k ≥ 0.

It follows that βk+1 ∼V
k βk for every k ≥ 0, therefore {βk}

V
k≥0 is a V -sequence of

Kα. By the hypothesis of the proposition, such a V -sequence has a limit β in Kα;
this means that α ≤ β and, since β∗ ∼V

k β for every k ≥ 0, we can conclude that
ΓV
K∗(β∗) = ΓV

K(β), hence ΓV
K(β) = ∆V and K is V -full. ✷

We remark that the condition of Proposition 5.1.10 is trivially satisfied by the V -
sequences {βk}

V
k≥0 definitively constant. Indeed, if βk = βn for every k ≥ n, then

βn is the limit of the V -sequence; thus, in applying the proposition, we can limit
ourselves to consider V -sequences which are not definitively constant.

With the tools described so far, we can build V -separable and V -full models
(and this will be done in next sections) and we can find “counterexamples” for the
ω-canonicity. On the other hand (as in the case of the strong completeness), if our
concern is to disprove the strong ω-completeness of some logic L, it is not sufficient
to take in account the V -separable and V -full models of a L, V -saturated set ∆V ,
but all the models of ∆V . We argue as in the previous chapter and we introduce
the notion of V -stable reduction that plays the role of the one of stable reduction.

5.1.11 Definition Let K = 〈P,≤, ρ,
〉 be a Kripke model and let V be a finite set
of propositional variables. We say that P ′ = 〈P ′,≤′, ρ′〉 is a V -stable reduction of
P = 〈P,≤, ρ〉 if and only if there is a p-morphism g from P onto P ′ which satisfies
the following condition, for every α ∈ P and β′ ∈ P ′:

- if g(α) <′ β′, there is β ∈ P s.t. β has finite V -grade in K, α < β and
g(β) = β′.

✷

5.1.12 Theorem (Strong ω-completeness Criterion)
Let L be a strongly ω-complete logic, let V be a finite set of propositional variables,
letK = 〈P,≤, ρ,
〉 be a V -separable and V -full model of LV and let P ′ be a V -stable
reduction of P . Then P ′ is a frame for L.
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Proof: Suppose that P ′ is not a frame for L. To prove the proposition, it suffices
to prove that:

(1) For every K ′′ = 〈P ′′,≤′′, ρ′′,
′′〉 such that ΓV
K′′(ρ′′) = ΓV

K(ρ),

the frame P ′′ = 〈P ′′,≤′′, ρ′′〉 is not a frame for L.

Indeed (1) implies that the L, V -saturated set ΓV
K(ρ) cannot be realized in any

Kripke model based on a frame for L, that is L is not strongly ω-complete (see
Proposition 1.5.3 (iv)).
Let K ′′ be as in (1), let h : P ′′ →P be as in Proposition 5.1.6 and let g be the p-
morphism from P onto P ′ as in the definition of V -stable reduction. We know that
h is “less than” a p-morphism, while g is “more than” a p-morphism; composing
these two maps, we get:

(2) f = g ◦ h is a p-morphism from P ′′ onto P ′

from which (1) follows.
Let α′′, β′′ ∈ P ′′; α′′ ≤′′ β′′ implies h(α′′) ≤ h(β′′), which implies g(h(α′′)) ≤′

g(h(β′′)), that is f(α′′) ≤′ f(β′′).
Let α′′ ∈ P ′′ and suppose f(α′′) <′ β′, that is g(h(α′′)) <′ β′. By definition of g,
there is β ∈ P such that:
- β has finite V -grade in K,
- h(α′′) < β and g(β) = β′.
By definition of h, there is β′′ ∈ P ′′ such that:
- α′′ ≤′′ β′′ and h(β′′) = β.
Hence f(β′′) = g(h(β′′)) = g(β) = β′.
On the other hand, f(ρ′′) = g(h(ρ′′)) = g(ρ) = ρ′, hence f is also surjective and (2)
is proved. ✷

5.2 Non strong ω-completeness of the logics Tn

First of all, we prove that the logics of finite branching Tn are not ω-canonical (this
result is proved also in [15] in a different way, even if the countermodel K is the
same). Let us consider the frame P = 〈P,≤, e3〉 defined as in Figure 5.1. We point
out that:

- P = {an, bn, cn, dl, em, α : n ≥ 0, l ≥ 2, m ≥ 3}.

Moreover, for every δ ∈ P it holds that:

- α < δ iff δ ∈ {an, bn, cn : n ≥ 0}

- dk < δ iff δ ∈ {an, bj , cj : 0 ≤ n ≤ k − 1, 0 ≤ j ≤ k − 2}

- ek < δ iff δ ∈ {an, bn, cn, dl, em, α : n ≥ 0, l ≥ k − 1, m ≥ k + 1}.
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Figure 5.1: The model K of Tn

The forcing relation is defined so that the following properties hold with respect to
some finite set V of propositional variables.

• a0, b0, c0 have V -grade 0.

• The points in the set {an, bn, cn, dl, em, α : n ≥ 1, l ≥ 2, m ≥ 3} are ∼V
0

equivalent (clearly, they are not ∼V
0 equivalent to any of the points a0, b0, c0,

otherwise these ones would not have V -grade 0).

We stress that in this example and in the further ones we are not interested in
specifying in all details the forcing relation; on the other hand, it is not difficult to
see that a forcing relation matching the above conditions with respect to some finite
set V can be actually worked out.

5.2.1 Lemma For every n ≥ 0 the following holds.

(i) an, bn, cn, dn, en (when defined) have V -grade n.

(ii) The points {ak, bk, ck, dk, ek : k ≥ n+ 1} ∪ {α} are ∼V
n equivalent.

(iii) α has infinite V -grade.



80 Chapter 5. ANALYSIS OF ω-CANONICITY

Proof: (i) and (ii) are proved, by induction on n ≥ 0, by directly checking the
definition of the relation ∼V

n ; (iii) is an immediate consequence of (ii). ✷

5.2.2 Proposition K is V -separable and V -full.

Proof: The V -separability is immediate, since the points of finite V -grade are V -
separated from all the other points and we have only one point of infinite V -grade
(see Proposition 5.1.8). In order to prove the V -fullness, we apply Proposition 5.1.10.
Let {βk}

V
k≥0 be a V -sequence of K not definitively constant; taking into account how

the points of K are partitioned in ∼V
n -classes, it is easy to check that the only cone

of K containing {βk}
V
k≥0 is K itself and α is the limit of such a V -sequence; thus K

is V -full. ✷

5.2.3 Proposition K is a model of TV
n , for every n ≥ 2.

Proof: Let n ≥ 2 and suppose that K is not a model of TV
n . Then there is a

V -formula H such that H ∈ TV
n and H is not valid in K; without loss of generality,

we can assume that H is an instance of the axiom scheme of Tn, that is:

H =
n∧

i=0

((Ai→
∨

j 6=i

Aj)→
∨

j 6=i

Aj)→
n∨

i=0

Ai

where all the Ai are V -formulas. Let δ ∈ P be such that δ 6
 H; we show that δ
necessarily is one of the points ek. If δ is one of the points an, bn, cn, dm, with n ≥ 0
and m ≥ 2, then δ 
 H, since the cone P δ generated by δ is a finite frame for the
logic Tn. Moreover, let r be the implicational complexity of H; since α ∼V

r ar+1 and
ar+1 
 H, it follows that α 
 H as well. On the other hand, it is not the case that
all the points ek do not force H (for instance, since er+1 ∼V

r ar+1, then er+1 
 H).
Therefore we can assume that there is k ≥ 3 such that:

- ek 6
 H;

- for every δ > ek, δ 
 H.

This implies that:

- ek 

∧n

i=0(Ai→
∨

j 6=iAj)→
∨

j 6=iAj ;

- ek 6

∨n

i=0Ai.

It follows that, for every 0 ≤ i ≤ n, there is δi such that ek ≤ δi, δi 
 Ai (hence
δi 6= ek) and δi 6


∨
j 6=iAj . Since n ≥ 2 and ek has only two immediate successors,

one of them, let us call it β∗, sees at least two distinct such points δi; thus β∗ 6
∨n
i=0Ai. On the other hand, by the above assumptions, β∗ 
 H and β∗ forces the

antecedent of H, hence β∗ 

∨n

i=0Ai must hold, a contradiction. We can conclude
that the initial assumption is false and thus the proposition is proved. ✷
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Figure 5.2: The frame P̃n

5.2.4 Theorem Tn is not strongly ω-complete, for every n ≥ 2.

Proof: Let n ≥ 2 and let us consider the finite frame P̃n in Figure 5.2. We prove
that P̃n is a V -stable reduction of P . At this aim, we can take the p-morphism g

from P onto P̃n defined as follows:

- g(ek) = ρ for k ≥ 3.

- g(d(n+1)k+j) = τj for 0 ≤ j ≤ n and k ≥ 0.

- g(ak) = g(bk) = g(ck) = g(α) = ϕ for k ≥ 0.

Since K is a V -separable and V -full model of TV
n and P̃n is not a frame for Tn

(P̃n is finite and ρ has n + 1 immediate successors), by the Strong ω-completeness
Criterion we can conclude that Tn is not strongly ω-complete. ✷

In the previous proof we have implicitly showed that the V -separable and V -full
model K of TV

n is based on a frame P which is not a frame for Tn. We remark
that, in order to obtain countermodels of this kind, we are obliged to insert points
of infinite depth. Indeed, if K is a V -separable model of LV , any cone Kδ of K
generated by some point δ of finite depth is finite, hence it is based on a frame for
L. Besides this, if K is also V -full, then there are points β, we call them infinite
maximal points, such that β has infinite depth and any point δ > β has finite depth
(see the Appendix). We will prove (Corollary A.0.5) that, for such β, the cone Kβ

of K is based on a frame for L as well (for instance, in the frame P of the previous
proof, α is an infinite maximal point and one can directly check that Pα is a frame
for Tn). This is the reason why, in this kind of proofs, we have to build very deep
models.
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5.3 Non extensive ω-canonicity of the logic KP

We now show an application of these techniques to disprove the extensive ω-canonici-
ty of the logic KP (this improves [15], where it is stated that KP is not extensively
canonical). The idea is to define an (infinite) well V -separable model of KPV , for
some finite V , whose frame is not a frame for KP. At this aim, let us consider
the frame P = 〈P,≤, r0〉 of the Figure 5.3. More precisely, P satisfies the following
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Figure 5.3: The model K of KP

conditions:

- P = {an, bn, cn, gm, f0, h0, r0, α, γ : n ≥ 0,m ≥ 1}.

- α < δ iff δ ∈ {f0, an, bn, cn : n ≥ 0}.

- γ < δ iff either α ≤ δ or δ = gk for some k ≥ 1.

- δ < h0 iff δ = r0.

We define a model K = 〈P,≤, r0,
〉 based on P , where the forcing relation satisfies
the following conditions with respect to some finite set V of propositional variables.
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• f0, a0, b0, c0, h0, r0 have V -grade 0.

• The other distinct equivalence classes, with respect to the relation ∼V
0 , having

more than one element are:

- {an, bn, cn : n ≥ 1} ∪ {α};

- {gn : n ≥ 1} ∪ {γ}.

It is not difficult to prove that:

5.3.1 Lemma For every n ≥ 1 the following holds.

(i) an, bn, cn, gn have V -grade n.

(ii) The distinct equivalence classes with respect to the relation ∼V
n having more

than one element are:

- {ak, bk, ck : k ≥ n+ 1} ∪ {α};

- {gk : k ≥ n+ 1} ∪ {γ}.

(iii) α and γ have infinite V -grade.

✷

5.3.2 Proposition K is a V -separable and V -full model of KPV .

Proof: To prove the V -separability and the V -fullness of K, we can proceed as
in Proposition 5.2.2 (we point out that, in this case, we have two points of infinite
V -grade which are surely V -separated, in fact they are not even ∼V

0 equivalent).
Moreover, it is immediate to see that P is a frame for the logic KP (see Proposi-
tion 2.4.2), hence K is a model of KPV . ✷

Now, let us consider the model K ′ = 〈P ′,≤′, r′0 

′〉 obtained from K by deleting the

point γ; more formally, K ′ is defined as follows (see Figure 5.4).

- P ′ = {δ′ : δ ∈ P and δ 6= γ}.

- δ′1 <
′ δ′2 iff δ1 < δ2.

- δ′ 
′ p iff δ 
 p.

It is immediate to prove that, for every δ′ ∈ P ′ and every n ≥ 0, δ′ ∼V
n δ. This

allows us to state that:

5.3.3 Proposition K ′ is a well V -separable model of KPV . ✷
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Figure 5.4: Model K ′ of KP

It follows that:

5.3.4 Theorem The logic KP is not extensively ω-canonical.

Proof: We prove that the frame P ′ of the well V -separable model K ′ of KPV does
not satisfy the necessary condition relative to the frames for KP with enough final
points (see Proposition 2.4.2). As a matter of fact, let us take r′0, α

′ and g′1; then,
there is not any δ′ ∈ P ′ such that r′0 ≤′ δ′, δ′ ≤′ α′, δ′ ≤′ g′1 and Fin(δ′) = {f ′0},
thus P ′ is not a frame for KP and KP is not extensively ω-canonical. ✷

We point out that, according to the fact that KP is ω-canonical, K ′ is not V -full,
since the V -sequence {g′n}n≥1 has not V -limit in K ′ (indeed, it corresponds to the
point γ of K).

5.4 Strong ω-completeness of the logics in one variable

We continue the analysis of the logics in one variable. First of all, we give a condition
about the infinite models of such logics. Even if any frame P not belonging to
Spl(P σm

) is not a frame for NLm+1, this fact does not prevent us from defining
V -separable models K of NLV

m+1, with V finite, based on such a frame P . The
idea beyond this is that the possible p-morphisms from the generated subframes of
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P onto P σm
do not allow to separate, by means of V -formulas, the preimages of σ1

by the preimages of σ3 (clearly, P must be infinite). The following proposition is in
order.

5.4.1 Proposition Let K = 〈P,≤, ρ,
〉 be a Kripke model and let V be a finite
set of propositional variables.

(i) K is a model of NLV
m+1, for m ≥ 5, if and only if the following condition holds:

(†) for every generated subframe P ′ of P , for every p-morphism f from P ′

onto P σm
, for every k ≥ 0, there are δ1 and δ2 in P ′ such that δ1 ∼V

k δ2,
f(δ1) = σ1 and f(δ2) 6= σ1.

(ii) K is a model of NLV
n+1,n+2, for n ≥ 2, if and only if the following condition

holds:

(††) for every generated subframe P ′ of P , for every p-morphism f from P ′

onto P σn,n+1
, for every k ≥ 0, there are δ1 and δ2 in P

′ such that δ1 ∼
V
k δ2,

f(δ1) = σ1 and f(δ2) 6= σ1.

Proof:
(i) Suppose that, for some m ≥ 5, K does not satisfy (†); then there is a generated
subframe P ′ of P and a p-morphism f from P ′ onto P σm

such that, for some n ≥ 0,
it holds that:

(*) for every δ1, δ2 in P ′, δ1 ∼
V
n δ2 and f(δ1) = σ1 implies f(δ2) = σ1.

Let α1, . . . , αj be a finite list of points of P ′ such that:

- f(αk) = σ1 for every 1 ≤ k ≤ j;

- for every β in P ′ such that f(β) = σ1, β ∼V
n+1 αk for some 1 ≤ k ≤ j.

By Lemma 5.1.3, there are some V -formulas H1, . . . , Hj such that, for 1 ≤ k ≤ j,
the following holds:

- for every β in P ′, β 
 Hk iff αk 4V
n+1 β.

Let H be the V -formula H1 ∨ · · · ∨Hj . We prove that:

(**) for every β in P ′, β 
 H iff f(β) = σ1.

If β 
 H, then β 
 Hk for some 1 ≤ k ≤ j, hence αk 4V
n+1 β. By definition of 4V

n+1,
there is α in P ′ such that αk ≤ α and α ∼V

n β; since f(αk) = σ1, it follows that
f(α) = σ1 hence, by (*), f(β) = σ1. Suppose now that f(β) = σ1 and let k be such
that β ∼V

n+1 αk; then β 
 Hk, that is β 
 H; thus (**) is proved.
Let δ be any point of P ′ such that f(δ) = σm. Since in the model Kω (defined
in Section 2.5) σ1 forces p, σm does not force the {p}-formula nf m+1 and f is a
p-morphism from P ′ onto P σm

, by (**) δ does not force the instance nf m+1(H) of
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nf m+1 obtained by replacing p with the V -formula H; we can conclude that K is
not a model of NLV

m+1.
Conversely, suppose that K is not a model for NLV

m+1. We can assume that, for
some V -formula H, the instance nf m+1(H) of the axiom schema of NLm+1 is not
valid in K. Let α ∈ P be such that α 6
 nf m+1(H), that is:

α 6
 nf m(H)→nf m−2(H) ∨ nf m−3(H).

Then there is β ≥ α such that β 
 nf m(H), β 6
 nf m−2(H) and β 6
 nf m−3(H).
Let us define a map on the points δ ≥ β as follows:

- f(δ) = σk iff δ 
 nf k(H), δ 6
 nf k−2(H), δ 6
 nf k−3(H), for every 4 ≤ k ≤ m;

- f(δ) = σ3 iff δ 
 nf 3(H) and δ 6
 nf 1(H);

- f(δ) = σ2 iff δ 
 nf 2(H);

- f(δ) = σ1 iff δ 
 nf 1(H);

where nf 1(H) coincides with H. It is easy to check that f is a p-morphism from
P β onto P σm

. Let r ≥ 0 be the implicational complexity of H. By definition of f ,
for every δ1, δ2 in P β it holds that:

δ1 ∼
V
r δ2 =⇒ f(δ1) = σ1 iff f(δ2) = σ1.

This means that (†) does not hold.
(ii) Is proved as (i). ✷

Note that, if K is V -separable and k ≥ 2, the hypothesis δ1 ∼V
k δ2 and f(δ1) = σ1

implies that f(δ2) ∈ {σ1, σ3} (indeed, Fin(δ1) = Fin(δ2)).

5.4.1 The ω-canonical logics in one variable

So far we have proved that all the logics in one variable, except few of them (namely
Cl, Jn, NL3,4 and NL4,5, which are canonical), are not strongly complete. Now we
improve the result by showing that all the logics in one variable, except few of them
(namely, the four canonical ones plus the logics St, Ast, NL5,6 and NL6,7), are not
strongly ω-complete. Let us start with the trivial case of the logic NL6 = St.

5.4.2 Theorem The logic St is extensively ω-canonical.

Proof: Let K = 〈P,≤,
〉 be a well V -separable model of StV , for some finite V ,
and suppose that P is not a frame for St. Then there is a p-morphism f from some
generated subframe P ′ of P onto P σ5

. Since K has finitely many final points and
K is V -separable, there is a V -formula H of implicational complexity 1 such that:

- δ 
 H if δ is final and f(δ) = σ1;

- δ 
 ¬H if δ is final and f(δ) = σ2.
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Let α ∈ P be such that f(α) = σ5; it is easy to see that α 6
 nf 6(H), which is an
instance of the axiom schema of St. Since such a formula belongs to StV , we get a
contradiction. Thus f does not exist and St is extensively ω-canonical. ✷

The proof of ω-canonicity of the remaining logics is not trivial, and an essential
use of the hypothesis of V -fullness is needed.

5.4.3 Theorem The logics Ast, NL5,6 and NL6,7 are ω-canonical.

Proof: We prove the theorem only for the logic NL6,7 (the other cases are similar1).
Let K = 〈P,≤,
〉 be a V -separable and V -full model of NLV

6,7, for some finite V ,
and suppose that P is not a frame for NL6,7. Then there is a p-morphism f from
some generated subframe P ′, contained in some cone P α̃ of P , onto P σ5,6

. Let H

be the V -formula defined in the proof of Theorem 5.4.2; then, for every δ in P ′, it
holds that:

- δ 
 ¬H ∨ ¬¬H iff f(δ) ∈ {σ1, σ2, σ3}

(note that ¬H ∨ ¬¬H has implicational complexity 3). We can apply Proposi-
tion 1.6.3 and we can state that:

(a) Let α ∈ P be such that f(α) = σ̃, with σ̃ ∈ {σ4, σ5}. Then there is β such
that α ≤ β, f(β) = σ̃ and, for every δ > β, f(δ) 6= σ̃.

Thus we can take α, β, α′, β′ ≥ α̃, P ◦ and GMAX as follows.

- f(α) = σ5 and, for all δ > α, f(δ) 6= σ5;

- f(α′) = σ6;

- α < β, α′ < β′ and f(β) = f(β′) = σ3;

- P ◦ = {δ ∈ P : α ≤ δ or α′ ≤ δ};

- GMAX = {γ ∈ P ◦ : f(γ) = σ4 and, for all δ > γ, f(δ) 6= σ4}.

Clearly the generated submodel K◦ = 〈P ◦,≤,
〉 of K is a V -separable and V -full
model of NLV

6,7. We prove the following facts.

(b) For every V -sequence {γk}
V
k≥0 ⊆ GMAX , the limit of {γk}

V
k≥0 belongs to GMAX .

In fact, by the V -fullness of K◦, {γk}
V
k≥0 has a limit γ∗ ∈ P ◦; since α′ ≤ γ∗ and

γ∗ 6
 ¬H ∨ ¬¬H, it follows that f(γ∗) ∈ {σ4, σ6}. Therefore there is γ′ such that
γ∗ ≤ γ′ and γ′ ∈ GMAX . Suppose that γ∗ 6= γ′; by the V -separability of K◦, there is
k ≥ 3 such that γ∗ 6∼V

k γ′. Let δ ≥ γk+1 be such that δ ∼V
k γ′; since δ 6
 ¬H ∨ ¬¬H

(indeed γ′ 6
 ¬H∨¬¬H and k ≥ 3), by the maximality of γk+1 it holds that δ = γk+1,
that is γ′ ∼V

k γ∗, a contradiction; hence γ∗ = γ′ and γ∗ ∈ GMAX .

1The case of Ast is also treated in [15] in a different way.
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(c) There is n ≥ 0 such that, for every γ ∈ GMAX , for every δ ∈ P ◦ s.t. δ ∼V
n β,

it holds that γ 6< δ.

Suppose that (c) does not hold; then, for every n ≥ 0, there are γn ∈ GMAX and
βn ∼V

n β such that γn < βn. Starting from the points γn, we can extract a V -
sequence {γ′k}

V
k≥0 contained in GMAX in the following way: γ′0 is chosen in a ∼V

0

class containing infinitely many γn (that is, in such a class there occur infinitely
many indexes n of non necessarily distinct points γn); γ′k+1 is chosen in the ∼V

k

class [γ′k]∼V
k

(which, inductively, contains infinitely many γn) in such a way that

[γ′k+1]∼V
k+1

contains infinitely many points γn as well (this is a kind of Bolzano-

Weierstrass construction which can be carried out by the fact that there are only
finitely many ∼V

k equivalence classes). Let γ∗ be the limit of such a V -sequence;
then ΓV,k(γ∗) ⊆ ΓV,k(β) for every k ≥ 0, hence ΓV (γ∗) ⊆ ΓV (β) and, by the well
V -separability of K◦, γ∗ ≤ β. This yields a contradiction, since, by (b), γ∗ ∈ GMAX

and f(β) = σ3; therefore (c) holds. Similarly, we can prove:

(d) There is m ≥ 0 such that, for every γ ∈ GMAX , for every δ ∈ P ◦ s.t. δ ∼V
m β′,

it holds that γ 6< δ.

Let n and m be as in (c) and in (d) respectively, let r = max(n,m, 2) and consider
the set

B = {δ ∈ P ◦ : δ ∼V
r β or δ ∼V

r β′}.

Since r ≥ 2, every point δ ∈ B is not final and Fin(δ) ⊆ Fin(β) ∪ Fin(β′). By (c)
and (d), it holds that:

(e) For every γ ∈ GMAX and every δ ∈ B, γ 6< δ.

We define a map g : P ◦→P σ5,6
as follows.

- g(δ) = σ1 iff f(δ) ∈ {σ1, σ3} and, for all δ′ ∈ B, δ 6< δ′.

- g(δ) = σ2 iff f(δ) = σ2.

- g(δ) = σ3 iff f(δ) ∈ {σ1, σ3} and there is δ′ ∈ B such that δ ≤ δ′.

- g(δ) = σ4 iff there is γ ∈ GMAX such that δ ≤ γ and, for all δ′ ∈ B, δ 6< δ′.

- g(δ) = σ5 iff δ = α.

- g(δ) = σ6 iff there is δ′ ∈ B s.t. δ ≤ δ′ and there is γ ∈ GMAX s.t. δ ≤ γ.

Note in particular that g(δ) = σ3 for every δ ∈ B; by (e), g(γ) = σ4 for every
γ ∈ GMAX , g(α′) = σ6. Taking into account the previous statements, it is not
difficult to prove that g is a p-morphism from P ◦ onto P σ5,6

. Since Kα̃ is a model

of NLV
6,7 with root α̃, by Condition (††) of Proposition 5.4.1 there are δ and δ′ in

P ◦ such that δ ∼V
r+1 δ

′, g(δ) = σ1 and g(δ′) 6= σ1, that is g(δ′) = σ3. By definition
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of g, there is β∗ ∈ B such that δ′ ≤ β∗; being δ ∼V
r+1 δ

′, there is δ∗ ≥ δ such that
δ∗ ∼V

r β∗. This implies that δ∗ ∈ B, hence g(δ∗) = σ3, which is absurd. We can
conclude that the p-morphism f cannot exist, therefore P is a frame for NL6,7 and
NL6,7 is ω-canonical. ✷

We stress that in the previous theorem we have heavily used the V -fullness hypoth-
esis and such an hypothesis cannot be avoided, due to the fact that such logics are
not extensively ω-canonical (we will only treat the nontrivial case of the logic NL5,6

at the end of this chapter; for Ast see [15], and the case of NL6,7 is similar). Thus
the analysis of the strongly ω-complete logics is completed.

The next step is to prove that all the other logics are not strongly ω-complete.
We can proceed as in the case of strong completeness: firstly we disprove the strong
ω-completeness of NL8 by exhibiting a model K = 〈P,≤, r0,
〉 such that, for some
finite V , K is a model of NLV

8 and P σ7
is a V -stable reduction of P = 〈P,≤, r0〉.

This proof (just in the case of St) can be easily extended to the infinitely many logics
NLm+1 and NLn+1,n+2 for m ≥ 9 and n ≥ 6 (namely, the logics in one variable
strictly contained in NL8), in virtue of the fact that the frame P σ7

is a cone of
the frames P σm

and P σn,n+1
. It is left out the logic NL9, which (as Ast) must be

treated apart.

5.4.2 The logic NL8

The construction of the countermodel K for NL8 is rather complex, thus we proceed
by degrees. First of all, we consider the “tower” of points ak, bk, ck (k ≥ 0) of
root α in Figure 5.5. Starting from this frame, we define the sequences of points
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Figure 5.5: The points ak, bk, ck, α

d3, d4, d5, . . . and g1, g2, . . . , γ in the following way (see Figure 5.6).

- The immediate successors of dk are ak−1 and ck−2 for every k ≥ 3.

- The immediate successors of g1 are a0, b0, c0, f0, where f0 is a new final point.

- The immediate successors of g2k are g2k−1 and a2k−1 for every k ≥ 1.
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- The immediate successors of g2k+1 are g2k and c2k for every k ≥ 1.

- α is an immediate successor of γ; moreover, for every β, γ < β iff α ≤ β or
β = f0 or β = gn for some n ≥ 1.

- α 6≤ dk, γ 6≤ dk and α 6≤ gn for every k ≥ 3 and n ≥ 1.
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Figure 5.6: The sequences of points gk and dk

We now define the sequences e4, e5, . . . , ε and h4, h5, . . . , η (see Figure 5.7), which
satisfy the following properties for every k ≥ 4.

- The immediate successors of ek are dk and f0.

- The immediate successors of hk are dk−1 and ek.

- The immediate successors of ε are α and f0.

- The only immediate successor of η is ε (hence η 6< dj for every j ≥ 3; a fortiori,
η 6< el and η 6< hl for every l ≥ 4).

Finally, the root r0 has, as immediate successors, all the points hk (k ≥ 4), γ and η
(see Figure 5.8 for a global picture of K).

The forcing relation is defined so that the following properties hold with respect to
some finite set V of propositional variables.

• a0, b0, c0, f0, r0 have V -grade 0.
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• The distinct equivalence classes with respect to the relation ∼V
0 having more

than one element are:
- {ak, bk, ck : k ≥ 1} ∪ {dk : k ≥ 3} ∪ {α}
- {ek : k ≥ 4} ∪ {ε}
- {gk : k ≥ 1} ∪ {γ}
- {hk : k ≥ 4} ∪ {η}.

It is indeed a routine task to find such a finite V and to define the forcing such that
the above properties hold.

5.4.4 Lemma For every n ≥ 0 the following holds.

(i) an, bn, cn, dn, gn, en, hn (when defined) have V -grade n.

(ii) The distinct equivalence classes with respect to the relation ∼V
n having more

than one element are:
- {ak, bk, ck, dk : k ≥ n+ 1} ∪ {α}
- {ek : k ≥ n+ 1} ∪ {ε}
- {gk : k ≥ n+ 1} ∪ {γ}
- {hk : k ≥ n+ 1} ∪ {η}.

(iii) α, γ, ε, η have infinite V -grade.

Proof: (i) and (ii) are proved, by induction on n ≥ 0, by directly checking the
definitions; (iii) is an immediate consequence of (ii). ✷

5.4.5 Proposition K is V -separable and V -full.

Proof: To prove the V -separability, we can apply Proposition 5.1.8, observing
that the points of infinite V -grade are pairwise V -separated since they belong to
different ∼V

0 classes. In order to prove the V -fullness, we apply Proposition 5.1.10.
Let {βk}

V
k≥0 be a non definitively constant V -sequence contained in some cone Kδ

of K. Then one of the following facts holds:



92 Chapter 5. ANALYSIS OF ω-CANONICITY

ba 0 0 c 0

f

d

d

d

d

e

e

e

h h h4 5 6

4

5

6

3

4

5

6

0

g

g

g

g

g

1

2

3

4

5

α

ε

η

...........

............

γ

..........

r 0

Figure 5.8: The model K



5.4. STRONG ω-COMPLETENESS OF THE LOGICS IN ONE VARIABLE 93

(I) {βk : k ≥ 0} ⊆ {ak, bk, ck : k ≥ 0} ∪ {dk : k ≥ 3} ∪ {α}

(II) {βk : k ≥ 0} ⊆ {ek : k ≥ 4} ∪ {ε}

(III) {βk : k ≥ 0} ⊆ {gk : k ≥ 1} ∪ {γ}

(IV) {βk : k ≥ 0} ⊆ {hk : k ≥ 4} ∪ {η}.

We have to show that {βk}
V
k≥0 has a limit β in Kδ. Suppose that (I) holds. Then

α is the limit of {βk}
V
k≥0; moreover, since {βk}

V
k≥0 contains infinitely many distinct

points, necessarily δ ≤ α, and this concludes the proof. The other cases are similar
and the limits are ε, γ, η respectively. ✷

The most delicate question lies in proving that K is a model of NLV
8 since, in order

to apply Proposition 5.4.1, we have to take into account all the possible p-morphisms
from any generated subframe of P onto P σ7

. This is treated in next lemma.

5.4.6 Lemma Let P ′ be a generated subframe of P and let f be a p-morphism
from P ′ onto P σ7

. Then:

(i) f(δ) = σ7 if and only if δ = r0 (hence P ′ coincides with P ).

(ii) f(ak) = σ1 for every k ≥ 0.

(iii) There is n ≥ 3 such that f(dk) = σ3 for every k ≥ n.

Proof: Let P ′ be a generated subframe of P such that there is a p-morphism f

from P ′ onto P σ7
. We firstly observe that:

(⋆) for every δ ∈ {f0, ak, bk, ck, dj , gh : k ≥ 0, j ≥ 3, h ≥ 1}, f(δ) 6= σ5.

This fact can be easily verified; as a matter of fact one can observe that the final
points of the finite cone P δ of P are prefinally connected in P δ (in the sense of [8]),
thus P δ is a frame for St and f(δ) 6= σ5. It follows that {a0, b0, c0, f0} ⊆ Dom(f),
hence {f(a0), f(b0), f(c0), f(f0)} ⊆ {σ1, σ2}.

(1) f(a0) = f(b0) = f(c0).

If (1) does not hold, by the above remarks we get:

- {a2, b2, c2} ⊆ Dom(f) and f(a2) = f(b2) = f(c2) = σ4.

This implies that σ5 has not preimage in P ′, in fact:

- if δ ∈ {a0, b0, c0, a1, b1, c1, g1, g2} then, by (⋆), f(δ) 6= σ5;

- in all the other cases, δ ≤ a2 or δ ≤ b2 or δ ≤ c2, hence f(δ) 6= σ5.

From (1), it follows that:

(2) f(a0) = f(b0) = f(c0) = σ1 and f(f0) = σ2.
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Otherwise, we would have f(a0) = f(b0) = f(c0) = σ2 and f(f0) = σ1; hence σ3 has
not preimage in P ′.

(3) f(hk) 6= σ7 for every k ≥ 4.

Suppose f(hk) = σ7 for some k ≥ 4. By (2) it holds that:
- f(dk−1) ∈ {σ1, σ3};
- f(dk) ∈ {σ1, σ3}.
Let δ > hk be such that f(δ) = σ4; necessarily δ = ek. Hence there is not δ > hk
such that f(δ) = σ5, and (3) is proved.

(4) If α ∈ Dom(f), f(α) ∈ {σ1, σ3}.

(5) f(γ) 6= σ7, f(ε) 6= σ7, f(η) 6= σ7.

If f(γ) = σ7, by (⋆) and (4) there is not δ > γ such that f(δ) = σ5; the same holds
for ε. Suppose that f(η) = σ7 and let δ > η be such that f(δ) = σ4. Necessarily
δ = ε, hence f(δ) 6= σ5 for every δ > η.
By (3), (4) and (5), it follows that:

(6) f(δ) = σ7 if and only if δ = r0

and this proves (i). In particular, f is defined on all the points of P .

(7) f(gk) = σ4 for every k ≥ 1.

In fact, gk < a0, gk < f0 and, for every δ ≥ gk, f(δ) 6= σ5.
By (2) and (7), we get:

(8) f(ak) = f(bk) = f(ck) = σ1 for every k ≥ 0

and (ii) is proved. Moreover, it follows that:

(9) f(α) = σ1, f(γ) = f(ε) = f(η) = σ4.

(10) There is n ≥ 3 such that f(dn) = σ3.

If (10) does not hold, then f(dk) 6= σ3 for every k ≥ 3, hence f(dk) = σ1 for every
k ≥ 3. This implies that σ3 has not preimage in P , which is absurd.

(11) f(dk) = σ3 implies f(dk+1) = σ3, for every k ≥ 3.

Suppose f(dk) = σ3; since f(hk+1) 6= σ7, necessarily f(hk+1) = σ5 and f(ek+1) = σ5,
therefore f(dk+1) = σ3.
From (10) and (11), by induction on k ≥ n, (iii) follows. Note that we have com-
pletely characterized the possible p-morphisms from P onto P σ7

. ✷

By Lemma 5.4.6 and by the fact that ak+1 ∼V
j dk+1 for every k ≥ 2 and j ≤ k, K

satisfies Condition (†) of Proposition 5.4.1; therefore:

5.4.7 Proposition K is a model of NLV
8 . ✷
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5.4.8 Theorem NL8 is not strongly ω-complete.

Proof: Let us consider the following map g : P→P σ7
.

- g(ak) = g(bk) = g(ck) = g(α) = σ1 for every k ≥ 0.

- g(f0) = σ2.

- g(dk) = σ3 for every k ≥ 3.

- g(gk) = g(γ) = g(ε) = g(η) = σ4 for every k ≥ 1.

- g(ek) = g(hk) = σ5 for every k ≥ 4.

- g(r0) = σ7.

Then g is a p-morphism from P onto P σ7
and, by definition of g, P σ7

is a V -stable

reduction of P . Since K is a V -separable and V -full model of NLV
8 and P σ7

is not a
frame for NL8, by the Strong ω-completeness Criterion we can conclude that NL8

is not strongly ω-complete. ✷

5.4.3 The logics NLm+1 (m ≥ 9) and NLn+1,n+2 (n ≥ 6)

To treat these logics, firstly we extend the countermodel K into the models Km

and Kn,n+1, then we proceed as in the previous section. At this aim, we consider a
sequence of points t1, t2, . . . defined as follows (see Figure 5.9).

- t7 coincides with the root r0 of P .

- For every k 6= 7, tk 6∈ P .

- For every k 6= 7 and every j ≥ 1, tj is an immediate successor of tk if and only
if σj is an immediate successor of σk in Pω (defined in Section 2.5).

The frames Pm and Pn,n+1, for m ≥ 9 and n ≥ 6, are defined as follows.

• Pm = 〈Pm,≤, tm〉 is the frame having as root tm.

• Pn,n+1 = 〈Pn,n+1,≤, rn〉 is the frame such that:

– rn is the root of Pn,n+1;

– the immediate successors of rn are tn and tn+1.

In order to define the models Km = 〈Pm,≤, tm,
〉 and Kn,n+1 = 〈Pn,n+1,≤, rn,
〉,
we consider a suitable increasing sequence of finite sets Vm of propositional variables
containing V (used for the logic NL8) such that the following conditions hold.

(a) a0, b0, c0, f0 and tk, for 1 ≤ k ≤ m, have Vm-grade 0 in Km.
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Figure 5.9: The sequence of points tk

(b) The distinct equivalence classes with respect to the relation ∼Vm

0 in Km having
more than one element are:
- {ak, bk, ck : k ≥ 1} ∪ {dk : k ≥ 3} ∪ {α}
- {ek : k ≥ 4} ∪ {ε}
- {gk : k ≥ 1} ∪ {γ}
- {hk : k ≥ 4} ∪ {η}.

(c) a0, b0, c0, f0, rn and tk, for 1 ≤ k ≤ n+ 1, have Vn+1-grade 0 in Kn,n+1.

(d) The distinct equivalence classes with respect to the relation ∼
Vn+1

0 in Kn,n+1

having more than one element are as in (b).

5.4.9 Proposition
(i) Km is Vm-separable and Vm-full for every m ≥ 9.

(ii) Kn,n+1 is Vn+1-separable and Vn+1-full for every n ≥ 6.

Proof: We observe that the cone P t7
of Pm coincides with P and all the points tk

have Vm-grade 0; thus (i) follows from Proposition 5.4.5. In a similar way (ii) is also
proved. ✷

5.4.10 Lemma
(i) Let P ′ be a generated subframe of Pm, with m ≥ 9, and let f be a p-morphism

from P ′ onto P σm
. Then:

- f(ak) = σ1 for every k ≥ 0.
- There is r ≥ 3 such that f(dk) = σ3 for every k ≥ r.
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(ii) Let P ′ be a generated subframe of Pn,n+1, with n ≥ 6, and let f be a p-
morphism from P ′ onto P σn,n+1

. Then:
- f(ak) = σ1 for every k ≥ 0.
- There is r ≥ 3 such that f(dk) = σ3 for every k ≥ r.

Proof:
(i) Suppose that there is a p-morphism f from from some generated subframe P ′

of Pm onto P σm
. Firstly we prove that, for 2 ≤ k ≤ m, if f is defined on tk, then

f(tk) ≤ σk. If 2 ≤ k ≤ 6 or k = 8 the proof is immediate. Suppose, by absurd,
that f(t7) > σ7; if f(t7) ≥ σ9, then there must be δ > t7 such that f(δ) = σ7, in
contradiction with Point (i) of Lemma 5.4.6. Suppose that f(t7) = σ8 and let δ
be such that f(δ) = σ7. It is not the case that δ < t7 or δ > t8; this implies that
δ = σ8, but one can easily check that this is not possible; we can conclude that
f(t7) ≤ σ7. If 9 ≤ k ≤ m, then the immediate successors of tk are tk−2 and tk−3; if
f is defined on tk, then f(tk−2) ≤ σk−2 and f(tk−3) ≤ σk−3, therefore f(tk) ≤ σk.
On the other hand there must be a point δ of P σm

such that f(δ) = σm; it follows
that δ = tm, hence, for all 1 ≤ k ≤ m− 2, f(tk) = σk. In particular, f(t7) = σ7 and,
by Lemma 5.4.6, (i) follows.
(ii) Observe that f cannot be defined on rn. Arguing as in (i), we can prove that
f(tk) = σk for 1 ≤ k ≤ m+ 1; hence f(t7) = σ7 and, by Lemma 5.4.6, (ii) is proved.

✷

It follows that the models Km and Kn,n+1 satisfy Conditions (†) and (††) of Propo-
sition 5.4.1 respectively, therefore:

5.4.11 Proposition
(i) Km is a model of NLVm

m+1 for every m ≥ 9.

(ii) Kn,n+1 is a model of NL
Vn+1

n+1,n+2 for every n ≥ 6.
✷

5.4.12 Theorem The logics NLm+1 and NLn+1,n+2, for every m ≥ 9 and n ≥ 6,
are not strongly ω-complete.

Proof: Let g be the p-morphism from P onto P σ7
defined in Theorem 5.4.8; we

extend g to Pm as follows:

- g(tk) = σk for every 1 ≤ k ≤ m.

By definition of g, we can assert that P σm
is a Vm-stable reduction of Pm; since Km

is a Vm-separable and Vm-full model of NLVm

m+1 and P σm
is not a frame for NLm+1,

by the Strong ω-completeness Criterion it follows that NLm+1 is not strongly ω-
complete.
Let P σ̃n

be the frame obtained by adding to P σn,n+1
a root σ̃n. We extend g to

Pn,n+1 as follows:

- g(tk) = σk for every 1 ≤ k ≤ n+ 1;
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- g(rn) = σ̃n.

By definition of g, P σ̃n
is a Vn+1-stable reduction of Pn,n+1; since Kn,n+1 is a Vn+1-

separable and Vn+1-full model of NL
Vn+1

n+1,n+2 and P σ̃n
is not a frame for NLn+1,n+2,

the logic NLn+1,n+2 is not strongly ω-complete. ✷

5.4.4 The logic NL9

It remains to analyze the logic NL9. To treat this case, we define the frame P 8 =
〈P8,≤, z0〉 of root z0 and the model K8 = 〈P8,≤, z0,
〉. The points ak, bk, ck, with
k ≥ 0, dj , ej , with j ≥ 3, α, ε, f0 are defined as in Section 5.4.2. We introduce new
sequences of points l3, l4, . . . , λ, m4,m5, . . . , µ and n4, n5, . . . , ν in the following way.

- The immediate successors of lk are ak−1, ck−2 and f0 for every k ≥ 3.

- α 6≤ lk and λ 6≤ lk for every k ≥ 3.

(See Figure 5.10.)
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Figure 5.10: The sequence of points lk

- The immediate successors of mk are dk−1, lk−1 and lk for every k ≥ 4

- The only immediate successor of µ is λ.

- µ 6≤ dk and µ 6≤ lk for every k ≥ 3.

(See Figure 5.11.)
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Figure 5.11: The sequence of points mk

- The immediate successors of nk are ek−1 and ek for every k ≥ 4.

- The only immediate successor of ν is ε.

- ν 6≤ dk and ν 6≤ lk for every k ≥ 3.

(See Figure 5.12.) The immediate successors of the root z0 are the points mk and
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Figure 5.12: The sequences of points ek and nk

nk, for every k ≥ 4, µ and ν.
The forcing relation is defined in such a way that the following properties hold with
respect to some finite set of propositional variables W .

• a0, b0, c0, f0, z0 have W -grade 0.

• The distinct equivalence classes with respect to the relation ∼W
0 having more

than one element are:
- {ak, bk, ck : k ≥ 1} ∪ {dk : k ≥ 3} ∪ {α}
- {ek : k ≥ 3} ∪ {ε}
- {lk : k ≥ 3} ∪ {λ}
- {mk : k ≥ 4} ∪ {µ}
- {nk : k ≥ 4} ∪ {ν}.
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The proof goes on according to the lines of the previous sections.

5.4.13 Lemma For every r ≥ 0 the following holds.

(i) ar, br, cr, dr, er, lr,mr, nr (when defined) have W -grade r.

(ii) The distinct equivalence classes with respect to the relation ∼W
r having more

than one element are:
- {ak, bk, ck, dk : k ≥ r + 1} ∪ {α}
- {ek : k ≥ r + 1} ∪ {ε}
- {lk : k ≥ r + 1} ∪ {λ}
- {mk : k ≥ r + 1} ∪ {µ}
- {nk : k ≥ r + 1} ∪ {ν}.

(iii) α, ε, λ, µ, ν have infinite W -grade.

✷

It follows that:

5.4.14 Proposition K8 is W -separable and W -full. ✷

Now, we study the p-morphisms on P 8.

5.4.15 Lemma Let P ′ be a generated subframe of P 8 and let f be a p-morphism
from P ′ onto P σ8

. Then:

(i) f(ak) = σ1 for every k ≥ 0.

(ii) One of the following facts (A) and (B) holds.
(A) f(α) = σ3.
(B) There is r ≥ 3 such that f(dk) = σ3 for every k ≥ r.

Proof: Let P ′ be a generated subframe of P 8 such that there is a p-morphism f

from P ′ onto P σ8
; we proceed as in in the proof of Lemma 5.4.6. We firstly observe

that {a0, b0, c0, f0} ⊆ Dom(f), hence {f(a0), f(b0), f(c0), f(f0)} ⊆ {σ1, σ2}.

(1) f(a0) = f(b0) = f(c0).

Otherwise:

- {a2, b2, c2} ⊆ Dom(f) and {f(a2), f(b2), f(c2)} ⊆ {σ4, σ6}.

This implies that σ5 has not preimage in P ′, in fact:

- if δ ∈ {a0, b0, c0, a1, b1, c1, f0}, f(δ) 6= σ5;

- in the remaining cases, either δ ≤ a2 or δ ≤ b2 or δ ≤ c2, hence f(δ) 6= σ5.
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It follows that:

(2) f(a0) = f(b0) = f(c0) = σ1 and f(f0) = σ2.

By (2), we can easily prove that:

(3) f(δ) = σ8 if and only if δ = z0.

Therefore f is defined on all the points of P 8.

(4) f(l3) = σ4.

If f(l3) 6= σ4, necessarily f(l3) = σ5, hence f(δ∗) = σ3 for some δ∗ ∈ {a2, a1, b1, c1}.
Let δ > z0 be such that f(δ) = σ4; since δ < f0, it follows that δ < δ∗, which is
absurd.

(5) f(lk) = σ4 implies f(lk+1) = σ4, for every k ≥ 3.

If f(lk) = σ4, then either f(mk+1) = σ4 or f(mk+1) = σ6, therefore f(lk+1) = σ4.
By (4) and (5), we can infer that:

(6) f(lk) = σ4 for every k ≥ 3.

This implies that:

(7) f(ak) = f(bk) = f(ck) = σ1 for every k ≥ 0.

Thus (i) is proved. To prove (ii), suppose that f(α) 6= σ3; we show that Condi-
tion (B) holds. We can assert:

(8) f(α) = σ1, f(ε) = f(λ) = f(µ) = f(ν) = σ4.

(9) There is r ≥ 3 such that f(er) = σ5.

Otherwise, f(ek) 6= σ5 for every k ≥ 3, that is f(ek) = σ4 for every k ≥ 3. It follows
that σ5 has not preimage in P 8.

(10) f(ek) = σ5 implies f(ek+1) = σ5, for every k ≥ 3.

In fact, if f(ek) = σ5, necessarily f(nk+1) = σ5 and f(ek+1) = σ5. Therefore:

(11) There is r ≥ 3 such that f(ek) = σ5 for every k ≥ r.

Since f(ek) = σ5 implies f(dk) = σ3, (B) is proved. ✷

5.4.16 Proposition K8 is a model of NLW
9 .

Proof: We prove that K8 satisfies Condition (†) of Proposition 5.4.1. Let f be a
p-morphism from some generated subframe P ′ of P 8 onto P σ8

and let k ≥ 0. If Con-
dition (A) of Lemma 5.4.15 holds, then ak+1 and α satisfy (†) of Proposition 5.4.1.
Otherwise, let r ≥ 3 be as in (B) and let m = max(k, r)+1; we have that am ∼W

k dm,
f(am) = σ1 and f(dm) = σ3, thus (†) of Proposition 5.4.1 holds also in this case. ✷
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5.4.17 Theorem NL9 is not strongly ω-complete.

Proof: Let us consider the following map g : P 8→P σ8
.

- g(ak) = g(bk) = g(ck) = g(α) = σ1 for every k ≥ 0.

- g(f0) = σ2.

- g(dk) = σ3 for every k ≥ 3.

- g(lk) = g(ε) = g(λ) = g(µ) = g(ν) = σ4 for every k ≥ 3.

- g(ek) = g(nj) = σ5 for every k ≥ 3 and every j ≥ 4.

- g(mk) = σ6 for every k ≥ 4.

- g(z0) = σ8.

Then g is a p-morphism from P 8 onto P σ8
and, by definition of g, P σ8

is a W -stable

reduction of P 8. Since K8 is a W -separable and W -full model of NLW
9 and P σ8

is
not a frame for NL9, by the Strong ω-completeness Criterion we can conclude that
NL9 is not strongly ω-complete. ✷

5.4.5 Non extensive ω-canonicity of NL5,6

To complete the survey on the logics in one variable, we prove that the logic NL5,6

is not extensively ω-canonical by exhibiting, for some finite V , a well V -separable
model K = 〈P,≤, w0,
〉 of NLV

5,6 based on a a frame P = 〈P,≤, w0〉 which is not
a frame for such a logic. The points ak, bk, ck, dj , for k ≥ 0 and j ≥ 3, are defined
as in Section 5.4.2; the points u0, w0 and vk, for k ≥ 4, are defined as follows (see
Figure 5.13):

- u0 < δ iff δ = ak or δ = bk or δ = ck, for some k ≥ 0, or δ = f0.

- The immediate successors of vk are vk+1, dk−1 and f0 for every k ≥ 4.

- The immediate successors of w0 are u0 and v4.

The forcing relation is defined in such a way that the following properties hold with
respect to some finite set V of propositional variables.

• a0, b0, c0, f0, u0, w0 have V -grade 0.

• The distinct equivalence classes with respect to the relation ∼V
0 having more

than one element are:
- {ak, bk, ck : k ≥ 1} ∪ {dk : k ≥ 3}
- {vk : k ≥ 4}.

Thus we have:
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Figure 5.13: The model K of NL5,6

• an, bn, cn, dn, vn (when defined) have V -grade n.

• The distinct equivalence classes with respect to the relation ∼V
n having more

than one element are:
- {ak, bk, ck, dk : k ≥ n+ 1}
- {vk : k ≥ n+ 1}.

Since all the points of K have finite V -grade, the following fact is immediate.

5.4.18 Proposition K is a well V -separable Kripke model. ✷

Of course, K cannot be V -full, since there are no points of infinite V -grade. In
order to obtain a V -full equivalent model, we have to add two points α and υ which
are the limits of the non definitively constant V -sequences contained in the sets
{ak, bk, ck, dj : k ≥ 0, j ≥ 3} and {vk : k ≥ 4} respectively.

5.4.19 Lemma Let P ′ be a generated subframe of P and let f be a p-morphism
from P ′ onto P σ4,5

. Then:

- f(ak) = σ1 for every k ≥ 0;

- f(dk) = σ3 for infinitely many k.

Proof: Let P ′ be a generated subframe of P such that there is a p-morphism f from
P ′ onto P σ4,5

(clearly w0 6∈ Dom(f)). As in the proof of Lemma 5.4.6, we have:

(1) f(a0) = f(b0) = f(c0) = σ1 and f(f0) = σ2.

(2) f(u0) = σ4.

If f(u0) 6= σ4, necessarily f(vn) = σ4 for some n ≥ 4. It follows that f(δ) = σ3 iff
δ = dk for some 3 ≤ k ≤ n − 2, hence σ5 has not preimage in P ′, which is absurd.
Therefore (2) holds and, as an immediate consequence, we have:
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(3) f(ak) = f(bk) = f(ck) = σ1 for every k ≥ 0.

Let n ≥ 4 be such that f(vn) = σ5; then:

(4) f(vk) = σ5 for every k ≥ n.

This allows us to infer that:

(5) For every k ≥ 3 there is m ≥ k such that f(dm) = σ3.

Thus the lemma is proved. ✷

We can now state the main result of this section.

5.4.20 Theorem The logic NL5,6 is not extensively ω-canonical.

Proof: By Proposition 5.4.18, K is well V -separable; by Lemma 5.4.19, K satisfies
Condition (††) of Proposition 5.4.1, therefore K is a model of NLV

5,6. On the other
hand, it is easy to define a p-morphism from some generated subframe P ′ of P onto
P σ4,5

; hence P is not a frame for NL5,6 and NL5,6 is not extensively ω-canonical.
✷

5.5 Some conclusions

The reader can notice that there is a close correspondence (at least at an high level)
between the techniques used in the context of ω-canonicity and the ones used for
canonicity. One may wonder whether there are advantages in extend the techniques
used for ω-canonicity to the case of canonicity. More precisely, instead of using
the chains to build countermodels for strong completeness, we could directly define
a model K and then study the separability, the fullness and the other properties
by defining suitable notions of “grade” of a point. At first glance, this approach
seems to be more complex, and we do not know whether we can get significative
improvements.

Another interesting question is the extension of these methods to modal logics.
For instance, in [15] it is shown that the canonicity and strong completeness criteria
can be easily reformulated for modal logics and, as an example, a new proof of the
non strong completeness of the modal logic K.1 (obtained by adding to the normal
modal system K the axiom scheme ✷✸p→✸✷p) is given. Our impression is that
there are not real difficulties in transpose these techniques in a modal framework.



Appendix A

Further properties on
ω-canonical models

In this section we will show some interesting properties of ω-canonical models
(that is, V -separable and V -full models, with V finite). The material of this section
is still unpublished; our aim is to develop the ideas here explained in order to obtain
filtration techniques, directly applied to ω-canonical models, more powerful than the
existing ones. For instance, if one attempts to prove the finite model property of
RH (that is to say, the decidability of such a logic) the known filtration techniques
are not suited.
Let V be a finite set of propositional variables and let K = 〈P,≤,
〉 be a V -
separable and V -full model. We say that a point α of K is finite if the cone Pα is
finite; we say that α is infinite if it is not finite. We recall that the finite points of
a V -separable model K (with V finite) are exactly the points of finite depth. The
following result (see [7]) shows that the finite points of K are well characterized by
means of V -formulas.

A.0.1 Proposition Let K = 〈P,≤,
〉 be V -separable and V -full model, where V
is a finite set of propositional variables, and let α be a finite point of K. Then, there
are two V -formulas Hα and Gα such that, for every β ∈ P , it holds that:

(i) β 
 Hα if and only if α ≤ β.

(ii) β 
 Gα if and only if β 6≤ α.

✷

We say that a point α of K is infinite maximal if α is infinite and every β > α is
finite. A remarkable property of ω-canonical models is that every infinite point sees
at least an infinite maximal point, as proved in next proposition.

105
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A.0.2 Proposition Let K = 〈P,≤,
〉 be a V -separable and V -full model (where
V is finite), and let α be an infinite point of K. Then there is a point β of K such
that α ≤ β and β is infinite maximal.

Proof: Let I be the set

I = {β : α ≤ β and β is infinite}.

Let C ⊆ I be a chain of elements of I , that is, C is a subset of I whose elements
are totally ordered by the partial ordering relation ≤. Let us define the set:

∆ =
⋃

ε∈C

ΓV
K(ε).

It is not difficult to prove that ∆ is a V -saturated set and that ΓV
K(α) ⊆ ∆. By

the V -fullness of K, there is δ ∈ P such that α ≤ δ and ΓV
K(δ) = ∆; moreover, by

the well V -separability of K, ε ≤ δ, for all ε ∈ C . We now prove that δ is infinite.
Suppose that δ is finite and let Hδ be the V -formula defined in Proposition A.0.1.
We have that δ 
 Hδ; thus, by definition of ∆, ε 
 Hδ, for some ε ∈ C . It follows
that δ ≤ ε, which is absurd, since ε is infinite and δ finite; thus δ must be infinite.
Therefore we have proved that δ is an element of I which is an upper bound (with
respect to ≤) of C . We can apply Zorn Lemma (see [21]) and claim that I has a
maximal element β∗ (with respect to ≤). It is immediate to see that β∗ is an infinite
maximal point. ✷

A.0.3 Proposition Let K = 〈P,≤,
〉 be a V -separable and V -full model (where
V is finite), let α be an infinite maximal point of K. Then α has no immediate
successors.

Proof: Suppose, by absurd, that α has an immediate successor β. We firstly prove
the following fact:

(A) For every δ such that α < δ, there is an immediate successor δ∗ of α such that
δ∗ ≤ δ.

Let δ be such that α < δ; if β ≤ δ then (A) is already proved; otherwise, let us
consider the set

S = {δ′ : α < δ′ ≤ δ}.

Reasoning as in the previous proposition (using the formula Gβ), we can show that
S has a minimal element δ∗, and this completes the proof of (A).
Let β1, β2, . . . , βn, . . . be an enumeration of all the immediate successors of α (we
point out that the set of immediate successors of α is actually numerable, since it is
a subset of the numerable set of all the finite points of K). We prove that:

(B) ΓV
K(α) ∪ {Gβ1

} 6⊢INT {Hβ1
, Hβ2

, . . . , Hβn
, . . .}
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where Gβ1
, Hβ1

, . . . , Hβn
, . . . are the V -formulas defined in Proposition A.0.1. Sup-

pose that (B) does not hold. Then, for some A1, . . . , Ak in ΓV
K(α) and some integers

j1, . . . , jm, we have that:

(*) A1 ∧ · · · ∧Ak ∧ Gβ1
⊢INT Hβj1

∨ · · · ∨Hβjm .

Let l = max{j1, . . . , jm} + 1. Then:

- βl 
 A1, . . . , βl 
 Ak (in fact, α < βl);

- βl 
 Gβ1
(in fact, βl 6≤ β1).

By (*), it follows that βl 
 Hβs
, for some s ∈ {j1, . . . , jm}, hence βs ≤ βl, which

implies that l = s, a contradiction; thus (B) is proved. We can apply the Inclusion-
exclusion Lemma and claim that there exists a V -saturated set ∆ such that:

- ΓV
K(α) ⊆ ∆;

- Gβ1
∈ ∆;

- for every n ≥ 1, Hβn
6∈ ∆.

Let, by the V -fullness of K, δ ∈ P be such that α ≤ δ and ΓV
K(δ) = ∆. Since

α 6
 Gβ1
, then α 6= δ; by (A), there is n ≥ 1 such that βn ≤ δ. This implies

that δ 
 Hβn
, that is Hβn

∈ ∆, a contradiction. We can conclude that the initial
hypothesis is false and α has no immediate successors. ✷

The following proposition about infinite maximal points of ω-canonical models is
the main result of this section.

A.0.4 Proposition Let K = 〈P,≤,
〉 be a V -separable and V -full model (V fi-
nite), and let α be an infinite maximal point of K. Then the cone Pα of P = 〈P,≤〉
has the filter property.

Proof: Suppose, by absurd, that Pα has not the filter property; then there are β1
and β2 in P such that:

(1) α < β1 and α < β2;

(2) for every δ ∈ P , if α < δ ≤ β1, then δ 6≤ β2.

Reasoning as before (and using the formula Gβ2
), we can prove that the nonempty

set

S = {δ : α < δ ≤ β1}

has a minimal element β∗. It follows that β∗ is an immediate successor of α, in
contradiction with the previous proposition. Thus Pα has the filter property. ✷
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In this way we have completely described the structure of an ω-canonical model
up to the “wall” of infinite maximal points. The question is whether there other
natural walls of this kind; we think that a knowledge of these barriers could lead to
significative improvements in filtration methods.

Finally, as an immediate consequence of the previous proposition, and taking
into account Proposition 1.9.6 and Proposition 1.3.1, we have:

A.0.5 Corollary Let L be an intermediate logic, let K = 〈P,≤,
〉 be a V -separa-
ble and V -full model of LV (V finite), and let α be an infinite maximal point of K.
Then the cone Pα of P = 〈P,≤〉 is a frame for L. ✷

One can verify these properties by examining the numerous examples of ω-canonical
models contained in Chapter 5.



Appendix B

An overview of the main results

We give a summarizing picture of the main notations and results.

B.1 Intermediate logics

Schema Axioms

bd1 = p1 ∨ ¬p1
bdn+1 = pn+1 ∨ (pn+1→bdn) n ≥ 1

bbn =
∧n

i=0((pi→
∨

j 6=i pj)→
∨

j 6=i pj)→
∨n

i=0 pi n ≥ 2

dum = (p→q) ∨ (q→p)

kp = (¬p→q1 ∨ q2)→(¬p→q1) ∨ (¬p→q2)

nf 1 = p

nf 2 = ¬p
nf 3 = ¬¬p
nf 4 = ¬¬p→p

nf k = nf k−1→nf k−3 ∨ nf k−4 k ≥ 5
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Intermediate logics

Bdn = Int + bdn (n ≥ 1)

LC = Int + dum

KP = Int + kp

Tn = Int + bbn (n ≥ 2)

MV = Int + ?

RH = Int + ?

Remark: For MV and RH only semantical characterizations are known.

Logics in one variable

Cl = Int + (nf 1 ∨ nf 2) = Int + nf 4

Jn = Int + (nf 2 ∨ nf 3) = Int + nf 5

NLn = Int + nf n n ≥ 6

NLm,m+1 = Int + nf m,m+1 m ≥ 3

St = NL6

Ast = NL7
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B.2 Classification of logics

Classification of some intermediate logics

Bdn (n ≥ 1) hypercanonical (QHY P0)

LC hypercanonical (QHY P1) non QHY P2

Jn hypercanonical (QHY P2) non QHY P1

KP canonical non extensively canonical
non extensively ω-canonical

Tn (n ≥ 2) non strongly ω-complete

MV non extensively canonical canonical ?

RH non canonical strongly complete ?

Classification of the logics in one variable

Canonical:

Cl hypercanonical QHY P0

Jn hypercanonical QHY P2, non QHY P1

NL3,4 hypercanonical QHY P1 and QHY P2

NL4,5 extensively canonical non hypercanonical

ω-canonical and Non strongly complete:

St extensively ω-canonical

NL5,6 non extensively ω-canonical
Ast non extensively ω-canonical
NL6,7 non extensively ω-canonical

Non strongly ω-complete:

NLn,n+1 with n ≥ 7
NLm with m ≥ 8
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Classification of the logics in one variable with bounded depth

Jn + bdh hypercanonical for h ≥ 1

NL3,4 + bdh hypercanonical for h ≥ 1

NL4,5 + bdh extensively canonical for h ≥ 1

NL7 + bdh = Ast + bdh hypercanonical for 1 ≤ h < 4

canonical
non extensively canonical for h ≥ 4

extensively ω-canonical for h ≥ 1

m ≥ 6 and m 6= 7 hm = m Div 2 + 1

NLm + bdh hypercanonical for 1 ≤ h < hm

non strongly complete for h ≥ hm

extensively ω-canonical for h ≥ 1

m ≥ 5 km = (m+ 3) Div 2 + 1

NLm,m+1 + bdh hypercanonical for 1 ≤ h < km

non strongly complete for h ≥ km

extensively ω-canonical for h ≥ 1
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