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Intuitionistic Propositional Logic

Intuitionistic Propositional Logic (IPL) is a constructive non-classical
logic.

Non-classical: some classical tautologies are not valid in IPL

A ∨ ¬A (A→ B) ∨ (B → A) ¬A ∨ (A→ B)

Constructive: IPL enjoys the Disjunction Property:

A ∨ B ∈ IPL =⇒ A ∈ IPL or B ∈ IPL

IPL is closely related to Propositional Classical Logic (CPL):

IPL ⊂ CPL

IPL can be embedded in CPL:

A ∈ IPL =⇒ ¬¬A ∈ IPL

Thus, the following principles are valid in IPL:

¬¬(A∨¬A ) ¬¬( (A→ B)∨ (B → A) ) ¬¬(¬A∨ (A→ B) )



Semantics

CPL

An interpretation I is a set of propositional variables.

The validity of a formula w.r.t. I is defined according to the classical
meaning of logical connectives (truth tables):

- I |= p iff p ∈ I, for p a propositional variable
- I |= A ∧ B iff I |= A and I |= B
- . . .

CPL is the set of formulas valid in all the interpretations.
IPL

To get a sound semantics for IPL, we need a more refined semantics.
A model is a set of classical interpretations, called worlds√

Each world represents a knowledge state√
Worlds are ordered by a partial order relation ≤√
Validity is represented by forcing relation 
 between worlds and
formulas√
Forcing is preserved by ≤:

w1 
 A ∧ w1 ≤ w2 =⇒ w2 
 A

This leads to Kripke frame semantics.



Semantics

A Kripke model is a structure K = 〈P,≤,V 〉, where:

P is a finite nonempty set of worlds

≤ is a partial order between worlds

V assign to each world a classical interpretation, obeying truth
preservation:

w1 ≤ w2 =⇒ I(w1) ⊆ I(w2)

The forcing relation 
 between worlds and formulas is inductively
defined as follows:

- w 1 ⊥
- w 
 p iff V (w) |= p (V (w) is the interpretation related to w)
- w 
 A ∧ B iff w 
 A and w 
 B
- w 
 A ∨ B iff α 
 A or w 
 B

- w 
 ¬A iff, for every w ′ ≥ w , w ′ 1 A
- w 
 A→ B iff, for every w ′ ≥ w , w ′ 1 A or w ′ 
 B

For formulas ¬A and A→ B, forcing at w depends on the
successors of w



Semantics

IPL is complete with respect to Kripke semantics, namely:

A ∈ IPL iff A is forced in every world of every Kripke model

Accordingly, if A 6∈ IPL, there exists a model K and a world w in K such
that A is not forced at w .
We call K a countermodel for A

w 1 A

. . . . . .

. . .



Semantics

Example

A countermodel for p ∨ ¬p is

w1:

w2: p

V (w1) = ∅ v(w2) = {p}

w1 1 p since p 6∈ V (w1)

w1 1 ¬p since w1 ≤ w2 and w2 
 p (p ∈ V (w2))

w1 1 p ∨ ¬p since w1 1 p and w1 1 ¬p

At w1, p is not forced.

The world w1 is followed by a world w2 and p is forced at w1,
thus ¬p is not forced at w2. Since forcing must be preserved
through ≤, ¬p is not forced at w1.

We conclude that p ∨ ¬p is not forced at w1.



Validity vs. non-validity

Let G be a goal formula

The validity of G in IPL can be witnessed by a derivation in a sound
calculus for IPL
Hilbert calculus, natural deduction deduction, tableaux/sequent, . . .

The non-validity of G can be witnessed by a countermodel

Typically, the emphasis is on derivations and countermodels are obtained
as a result of a failed proof-search for a derivation of G .

For almost all the the known tableaux/sequent calculi for IPL, we can
define a proof-search procedure ProofSearch such that:

ProofSearch(G) =

{
A derivation of G If G ∈ IPL

A countermodel for G Otherwise



Countermodels

A countermodel can be understood as a certificate witnessing the
non-validity of the goal formula G

Countermodels can be used for diagnosis, to analyze why some
property fails or to fix errors in formal specifications (see
Property-Based Testing).

It is critical that countermodels are minimal so as to convey a plain
and concise representation of non-validity.

This issue has been scarcely investigated in the literature. Many
proof-seearch procedures have been introduced, but all fail to build small
countermodels
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Countermodels

Example

G = (p1 → p2) ∨ (p2 → p1) ∨ (q1 → q2) ∨ (q2 → q1)

Countermodel generated by ProofSearch(G) [Ferrari et al.,TOCL,2015]
generating countermodels of minimal depth

w0:

w1: p1 w2: p2 w3: q1 w4: q2

The model has minimal height, but it is not mininal in the number of
worlds. A minimum countermodel is:

w0:

w1: p1, q1 w2: p2, q2

Note that we cannot shrink the first model to get a minimum one!



Countermodel generation

Main contribution

We present a procedure to generate minimal countermoles:

given a goal formula G , we try to build a countermodel for G by a
model-search procedure guided by semantics.

A naive implementation of the process immediately blows-up; even for
small goal formulas, model generation is not terminating.

We need a clever formalization of the problem.



Countermodel generation

Model formalization

We follow the approach of R. Goré et al. [IJCAR 2012, 2014]:

Worlds of models are represented by sets W of atomic subformulas
H of G , namely:

H ::= p | ¬A | A→ B p: propositional variable

We do not considers all possible sets W of atomic subformulas, but
only the sets W satisfying some closure properties, we call p-worlds
(possible worlds)

For instance:

W1 = { p, ¬p } W2 = { p, p → q }

W1 must be discarded since it is inconsistent
W1 must be discarded since it is not closed under modus ponens
(q 6∈ W2)



Countermodel generation

The first selected p-world W0 is a putative world falsifying G .
To get a well-defined Kripke model, we have to guarantee that
atomic subformulas of G not belonging to W0 are not valid in W0,
for instance:

A→ B 6∈ W0 =⇒ ∃W1(W0 ⊆ W1 ∧ A ∈ W1 ∧ B 6∈ W1 )

W1 is needed to witness the non-validity of A→ B in W0.

This triggers a saturation process which successfully ends when all
the needed witnesses have been generated, thus yielding a
countermodel for G .

W0 1 G

W1


 A
1 B



Countermodel generation

Computation engine

We formalize the search problem in Answer Set Programming (ASP)
[Baral 2010].
√

ASP is a form of declarative programming based on the stable model
semantics (answer sets),√
ASP enables to solve hard search problems (in NP and in NPNP) in
a uniform way

We define an ASP program ΠG such that an answer set of ΠG

corresponds to a countermodel for G .
If no answer exists, there is no countermodel for G , meaning that G
is valid (in IPL).

To compute answer sets, we exploit the Potassco tool
clingo [Gebser et al.,2012].

The minimization of models is delegated to clingo; however, it is
critical to encode the problem so that even the first computed model
is small, otherwise the minimization engine gets stuck.



Countermodel generation

Differently from other declarative formalisms, ASP allows for a quite
modular formalization:

ΠG = Gen + Goal(G )

Gen encodes the genereator and is independent of the goal formula

Goal(G ) encodes the goal formula

The generator can be easily extended to deal with other intermediate
logics where the frame conditions can be expressed in ASP, such as:

The Gödel-Dummett logic [Dummett,59], characterized by linear
frames

The logic of bound-depth frames

Here and There logic [Pearce,97], well-known in ASP



Countermodel generation

Frame conditions can be freely composed:

- lin.lp encodes the contraint “the model is linear”
:- world(W1), world(W2), W1 <> W2 , not le(W1,W2), not le(W2,W1).

- bd2.lp encodes the contraint “the model has depth at most 2”
:- world(W1), world(W2), world(W3), W1 <> W2, W1 <> W3, W2 <> W3,

le(W1,W2), le(W2,W3).

clingo gen.lp goal.lp lin.lp // linear countermodels

clingo gen.lp goal.lp bd2.lp // detpth <=2 countermodels

clingo gen.lp goal.lp lin.lp bd2.lp

// linear AND detpth <=2 countermodels

This kind of modularity is not possible with derivations!



Countermodel generation

The program is efficiente with formulas containing few propositional
variables.
For instance, let us consider the non-valid Nishimura formulas:

N1 = p N2 = ¬p
N2n+3 = N2n+1 ∨ N2n+2 N2n+4 = N2n+3 → N2n+1

The cuntermodel for N17 is computed in few seconds:


