
An ASP Approach

to Generate Minimal Countermodels

in Intuitionistic Propositional Logic

Camillo Fiorentini

DI, Univ. degli Studi di Milano, Milano, Italy

IJCAI 2019

Macao, August 14th, 2019

Intuitionistic Propositional Logic

Intuitionistic Propositional Logic (IPL) is a constructive non-classical
logic.

Non-classical: some classical tautologies are not valid in IPL

A ∨ ¬A (A→ B) ∨ (B → A) ¬A ∨ (A→ B)

Constructive: IPL enjoys the Disjunction Property:

A ∨ B ∈ IPL =⇒ A ∈ IPL or B ∈ IPL

IPL is closely related to Propositional Classical Logic (CPL):

IPL ⊂ CPL

IPL can be embedded in CPL:

A ∈ IPL =⇒ ¬¬A ∈ IPL

Thus, the following principles are valid in IPL:

¬¬(A∨¬A) ¬¬((A→ B)∨ (B → A)) ¬¬(¬A∨ (A→ B))

Semantics

CPL

An interpretation I is a set of propositional variables.

The validity of a formula w.r.t. I is defined according to the classical
meaning of logical connectives (truth tables):

- I |= p iff p ∈ I, for p a propositional variable
- I |= A ∧ B iff I |= A and I |= B
- . . .

CPL is the set of formulas valid in all the interpretations.
IPL

To get a sound semantics for IPL, we need a more refined semantics.
A model is a set of classical interpretations, called worlds√

Each world represents a knowledge state√
Worlds are ordered by a partial order relation ≤√
Validity is represented by forcing relation
 between worlds and
formulas√
Forcing is preserved by ≤:

w1
 A ∧ w1 ≤ w2 =⇒ w2
 A

This leads to Kripke frame semantics.

Semantics

A Kripke model is a structure K = 〈P,≤,V 〉, where:

P is a finite nonempty set of worlds

≤ is a partial order between worlds

V assign to each world a classical interpretation, obeying truth
preservation:

w1 ≤ w2 =⇒ I(w1) ⊆ I(w2)

The forcing relation
 between worlds and formulas is inductively
defined as follows:

- w 1 ⊥
- w
 p iff V (w) |= p (V (w) is the interpretation related to w)
- w
 A ∧ B iff w
 A and w
 B
- w
 A ∨ B iff α
 A or w
 B

- w
 ¬A iff, for every w ′ ≥ w , w ′ 1 A
- w
 A→ B iff, for every w ′ ≥ w , w ′ 1 A or w ′
 B

For formulas ¬A and A→ B, forcing at w depends on the
successors of w

Semantics

IPL is complete with respect to Kripke semantics, namely:

A ∈ IPL iff A is forced in every world of every Kripke model

Accordingly, if A 6∈ IPL, there exists a model K and a world w in K such
that A is not forced at w .
We call K a countermodel for A

w 1 A

.

. . .

Semantics

Example

A countermodel for p ∨ ¬p is

w1:

w2: p

V (w1) = ∅ v(w2) = {p}

w1 1 p since p 6∈ V (w1)

w1 1 ¬p since w1 ≤ w2 and w2
 p (p ∈ V (w2))

w1 1 p ∨ ¬p since w1 1 p and w1 1 ¬p

At w1, p is not forced.

The world w1 is followed by a world w2 and p is forced at w1,
thus ¬p is not forced at w2. Since forcing must be preserved
through ≤, ¬p is not forced at w1.

We conclude that p ∨ ¬p is not forced at w1.

Validity vs. non-validity

Let G be a goal formula

The validity of G in IPL can be witnessed by a derivation in a sound
calculus for IPL
Hilbert calculus, natural deduction deduction, tableaux/sequent, . . .

The non-validity of G can be witnessed by a countermodel

Typically, the emphasis is on derivations and countermodels are obtained
as a result of a failed proof-search for a derivation of G .

For almost all the the known tableaux/sequent calculi for IPL, we can
define a proof-search procedure ProofSearch such that:

ProofSearch(G) =

{
A derivation of G If G ∈ IPL

A countermodel for G Otherwise

Countermodels

A countermodel can be understood as a certificate witnessing the
non-validity of the goal formula G

Countermodels can be used for diagnosis, to analyze why some
property fails or to fix errors in formal specifications (see
Property-Based Testing).

It is critical that countermodels are minimal so as to convey a plain
and concise representation of non-validity.

This issue has been scarcely investigated in the literature. Many
proof-seearch procedures have been introduced, but all fail to build small
countermodels

L. Pinto and R.Dyckhoff, Loop-free construction of counter-models for intuitionistic propositional logic. Symposia Gaus-
siana Conf, 1995

G. Corsi and G. Tassi. Intuitionistic logic freed of all metarules. JSL, 2007

M. Ferrari, C. Fiorentini, and G. Fiorino. Contraction-free linear depth sequent calculi for intuitionistic propositional logic
with the subformula property and minimal depth counter-models. JAR, 2013.

D. Larchey-Wendling, D. Mry, and D. Galmiche. STRIP: Structural Sharing for Efficient Proof-Search. IJCAR, 2001.

V. Svejdar. On sequent calculi for intuitionistic propositional logic. Comment. Math. Univ. 2006

. . .

Countermodels

Example

G = (p1 → p2) ∨ (p2 → p1) ∨ (q1 → q2) ∨ (q2 → q1)

Countermodel generated by ProofSearch(G) [Ferrari et al.,TOCL,2015]
generating countermodels of minimal depth

w0:

w1: p1 w2: p2 w3: q1 w4: q2

The model has minimal height, but it is not mininal in the number of
worlds. A minimum countermodel is:

w0:

w1: p1, q1 w2: p2, q2

Note that we cannot shrink the first model to get a minimum one!

Countermodel generation

Main contribution

We present a procedure to generate minimal countermoles:

given a goal formula G , we try to build a countermodel for G by a
model-search procedure guided by semantics.

A naive implementation of the process immediately blows-up; even for
small goal formulas, model generation is not terminating.

We need a clever formalization of the problem.

Countermodel generation

Model formalization

We follow the approach of R. Goré et al. [IJCAR 2012, 2014]:

Worlds of models are represented by sets W of atomic subformulas
H of G , namely:

H ::= p | ¬A | A→ B p: propositional variable

We do not considers all possible sets W of atomic subformulas, but
only the sets W satisfying some closure properties, we call p-worlds
(possible worlds)

For instance:

W1 = { p, ¬p } W2 = { p, p → q }

W1 must be discarded since it is inconsistent
W1 must be discarded since it is not closed under modus ponens
(q 6∈ W2)

Countermodel generation

The first selected p-world W0 is a putative world falsifying G .
To get a well-defined Kripke model, we have to guarantee that
atomic subformulas of G not belonging to W0 are not valid in W0,
for instance:

A→ B 6∈ W0 =⇒ ∃W1(W0 ⊆ W1 ∧ A ∈ W1 ∧ B 6∈ W1)

W1 is needed to witness the non-validity of A→ B in W0.

This triggers a saturation process which successfully ends when all
the needed witnesses have been generated, thus yielding a
countermodel for G .

W0 1 G

W1

 A
1 B

Countermodel generation

Computation engine

We formalize the search problem in Answer Set Programming (ASP)
[Baral 2010].
√

ASP is a form of declarative programming based on the stable model
semantics (answer sets),√
ASP enables to solve hard search problems (in NP and in NPNP) in
a uniform way

We define an ASP program ΠG such that an answer set of ΠG

corresponds to a countermodel for G .
If no answer exists, there is no countermodel for G , meaning that G
is valid (in IPL).

To compute answer sets, we exploit the Potassco tool
clingo [Gebser et al.,2012].

The minimization of models is delegated to clingo; however, it is
critical to encode the problem so that even the first computed model
is small, otherwise the minimization engine gets stuck.

Countermodel generation

Differently from other declarative formalisms, ASP allows for a quite
modular formalization:

ΠG = Gen + Goal(G)

Gen encodes the genereator and is independent of the goal formula

Goal(G) encodes the goal formula

The generator can be easily extended to deal with other intermediate
logics where the frame conditions can be expressed in ASP, such as:

The Gödel-Dummett logic [Dummett,59], characterized by linear
frames

The logic of bound-depth frames

Here and There logic [Pearce,97], well-known in ASP

Countermodel generation

Frame conditions can be freely composed:

- lin.lp encodes the contraint “the model is linear”
:- world(W1), world(W2), W1 <> W2 , not le(W1,W2), not le(W2,W1).

- bd2.lp encodes the contraint “the model has depth at most 2”
:- world(W1), world(W2), world(W3), W1 <> W2, W1 <> W3, W2 <> W3,

le(W1,W2), le(W2,W3).

clingo gen.lp goal.lp lin.lp // linear countermodels

clingo gen.lp goal.lp bd2.lp // detpth <=2 countermodels

clingo gen.lp goal.lp lin.lp bd2.lp

// linear AND detpth <=2 countermodels

This kind of modularity is not possible with derivations!

Countermodel generation

The program is efficiente with formulas containing few propositional
variables.
For instance, let us consider the non-valid Nishimura formulas:

N1 = p N2 = ¬p
N2n+3 = N2n+1 ∨ N2n+2 N2n+4 = N2n+3 → N2n+1

The cuntermodel for N17 is computed in few seconds:

