A forward unprovability calculus for Intuitionistic Propositional Logic

Camillo Fiorentini

DI, Univ. degli Studi di Milano, Milano, Italy

Torino, October 8th, 2018

The inverse method has been extensively exploited to prove the *validity* of a goal formula in a specific logic.

Here we follow the dual approach:

We propose forward calculi C_G to derive the non-validity of a goal formula G in a logic L.

Thus, C_G is a forward refutation calculus for L.

• We focus on Intuitionistic Propositional Logic (IPL) and we present a forward refutation calculus **FRJ**(*G*) for IPL.

C. Fiorentini and M. Ferrari. A Forward Unprovability Calculus for Intuitionistic Propositional Logic. TABLEAUX 2017, LNAI, vol. 10501, pp. 114-130, Springer, 2017.

C. Fiorentini and M. Ferrari. Duality between unprovability and provability in forward proofsearch for Intuitionistic Propositional Logic. arXiv:1804.06689, 2018. We present a forward calculus FRJ(G) to derive the non-validity of a goal formula G in IPL.

G is provable in $\mathbf{FRJ}(G) \iff G \notin \mathrm{IPL}$

- If G is provable in **FRJ**(G):
 - $\sqrt{}$ from the derivation we extract a "small" Kripke countermodel for *G*, witnessing the non-validity of *G* in IPL.
- If G is not provable in **FRJ**(G):
 - $\sqrt{}$ we get a saturated database DB of sequents provable in **FRJ**(G);
 - $\sqrt{}$ by exploiting it, we build a derivation of G in a standard sequent calculus for IPL, witnessing the validity of G in IPL.

Notation

- \mathcal{V} is a set of propositional variables p, q, p_1, p_2, \ldots
- The language \mathcal{L} based on \mathcal{V} is the set of formulas A, B, \ldots such that:

$$\begin{array}{lll} A,B & ::= & \perp \mid p \mid A \land B \mid A \lor B \mid A \supset B & p \in \mathcal{V} \\ \neg A & ::= & A \supset \bot \end{array}$$

- A Kripke model is a structure $\mathcal{K} = \langle P, \leq, \rho, V \rangle$, where:
 - $\langle P, \leq \rangle$ is a finite poset with minimum ρ (root)
 - $V: P \to 2^{\mathcal{V}}$ is a function such that $\alpha \leq \beta$ implies $V(\alpha) \subseteq V(\beta)$
 - $\Vdash \subseteq P \times \mathcal{L}$ is the forcing relation:
 - α⊮⊥
 - $\alpha \Vdash p$ iff $p \in V(\alpha)$
 - $\alpha \Vdash A \land B$ iff $\alpha \Vdash A$ and $\alpha \Vdash B$
 - $\alpha \Vdash A \lor B$ iff $\alpha \Vdash A$ or $\alpha \Vdash B$
 - $\alpha \Vdash A \supset B$ iff, for every $\beta \in P$ s.t. $\alpha \leq \beta$, $\beta \nvDash A$ or $\beta \Vdash B$

• Sequents have the form

$$\Gamma \Rightarrow A \qquad \qquad \Gamma \cup \{A\} \subseteq \operatorname{Sf}(G)$$

Soundness

If $\Gamma \Rightarrow A$ is provable in **FRJ**(*G*), then the sequent $\Gamma \Rightarrow \Delta$ is non-valid, namely:

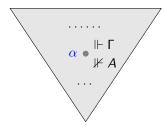
 $\sqrt{}$ the formula $\bigwedge \Gamma \supset A$ is non-valid in IPL

This means that:

 $\sqrt{}$ the formula A is not provable from formulas Γ in IPL

• Soundness (semantic)

 $\sqrt{}$ if $\Gamma \Rightarrow A$ is provable in **FRJ**(*G*), there exists a world α of a Kripke model such that:



All the formulas in Γ are forced in α A is not forced in α

Completeness

If G is non-valid in IPL, then a sequent of the form

$$\Gamma \Rightarrow G$$

is provable in $\mathbf{FRJ}(G)$. Note that the set Γ might be non-empty

• Axioms

In standard forward calculi axioms have the form

$$p \vdash p$$
 p: propositional variable

Since FRJ(G) is a refutation calculus, axioms are unprovable sequents (in IPL) only containing propositional variables and \perp :

$$p_1, \dots, p_n \Rightarrow q$$
 $q \neq p_1, \dots, q \neq p_n$
 $p_1, \dots, p_n \Rightarrow \bot$

where p_1, \ldots, p_n, q are propositional variables.

Rules must preserve unprovability in IPL

• Rule for $R \wedge$ (right and)

$$\frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \land B} R \land$$

If A is not provable from Γ , then $A \wedge B$ is not provable from Γ

• Rule for $L \lor$ (left or)

$$\frac{A,\Gamma\Rightarrow C}{A\lor B,\Gamma\Rightarrow C} L\lor$$

If *C* is not provable from $\{A\} \cup \Gamma$, then *C* is not provable from $\{A \lor B\} \cup \Gamma$ (*Inversion Principle for left* \lor)

Tricky task

How to cope with rules having more than one premise?

• Standard forward rule for $R \wedge$

Since rules must preserve provability, left formulas must be gathered.

$$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \land B} R \land$$

• Unprovability forward calculus

Since rules must preserve unprovability in ${\rm IPL},$ side formulas must be intersected.

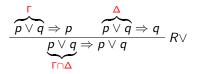
Apparently, the rule $R \lor$ should be:

$$\frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma \cap \Delta \Rightarrow A \lor B} R \lor$$

If A is not provable from Γ and B is not provable from Δ , then $A \lor B$ is not provable from $\Gamma \cap \Delta$

The alleged rule for right or is unsound!

Trivial counterexample



• Premises

p is not provable from $p \lor q$ q is not provable from $p \lor q$

Conclusion

 $p \lor q$ is provable from $p \lor q$

Thus, the rule does not preserve unprovability.

The problem is that intersection $\Gamma\cap\Delta$ is too big, we need a more clever strategy to join sequents.

This leads to the Forward Refutation calculus FRJ(G).

- We introduce two kinds of sequent:
 - Regular sequents $\Gamma \Rightarrow C$
 - Irregular sequents $\Sigma\,;\,\Theta\to {\it C}$
- Formulas occurring in the sequents are subformulas of the goal formula G
- In the left, only atoms and implications.
- There are no left rules, but only rules to introduce the connectives \land , \lor , \supset in the right and the multi-premise rules \bowtie^{At} and \bowtie^{\lor} to join sequents.
- G is provable in FRJ(G) iff there exists an FRJ(G)-derivation of a regular sequent of the form Γ ⇒ G.

Theorem (Soundness and Completeness of FRJ(G))

G is provable in $\mathbf{FRJ}(G) \iff G$ is not valid in IPL

• Rule V

This rule has two irregular sequents σ_1 and σ_2 as premises and yields an irregular sequent σ introducing an \lor -formula in the right.

 Σ -sets are preserved, Θ -sets are intersected.

$$\frac{\sigma_1 \ = \ \mathbf{\Sigma}_1; \ \Theta_1 \rightarrow C_1 \qquad \sigma_2 \ = \ \mathbf{\Sigma}_2; \ \Theta_2 \rightarrow C_2}{\sigma \ = \ \mathbf{\Sigma}_1, \ \mathbf{\Sigma}_2; \ \Theta_1 \cap \Theta_2 \rightarrow C_1 \lor C_2} \lor \qquad \begin{array}{c} \mathbf{\Sigma}_1 \ \subseteq \ \mathbf{\Sigma}_2 \cup \Theta_2 \\ \mathbf{\Sigma}_2 \ \subseteq \ \mathbf{\Sigma}_1 \cup \Theta_1 \end{array}$$

In the wrong \lor -rule:

 $\operatorname{Left}(\sigma) = \operatorname{Left}(\sigma_1) \cap \operatorname{Left}(\sigma_2)$

Now:

$$\operatorname{Left}(\sigma) \subseteq \operatorname{Left}(\sigma_1) \cap \operatorname{Left}(\sigma_2)$$

The calculus FRJ(G)

• Join rules

Join rules are multi-premise rules allowing the introduction on the right of an atomic formula (rule \bowtie^{At}) or a disjunction (rule \bowtie^{\vee}).

• The Join rule \Join^{At}

It introduces a formula $F \in \mathcal{V} \cup \{\bot\}$ in the right. As in rule \lor , Σ -sets are gathered and Θ -sets intersected.

$$\begin{split} \sigma_{j} &= \underbrace{\sum_{j}^{\mathrm{At}}, \sum_{j}^{\supset}}_{\Sigma_{j}}; \underbrace{\Theta_{j}^{\mathrm{At}}, \Theta_{j}^{\supset}}_{\Theta_{j}} \to A_{j} & \text{where } \sum_{j}^{\mathrm{At}} \cup \Theta_{j}^{\mathrm{At}} \subseteq \mathcal{V} \text{ and } \sum_{j}^{\supset} \cup \Theta_{j}^{\supset} \subseteq \mathcal{L}^{\supset} \\ \\ \frac{\sigma_{1} & \cdots & \sigma_{n}}{\sum^{\mathrm{At}}, \Theta^{\mathrm{At}} \setminus \{F\}, \Sigma^{\supset}, \Theta^{\supset} \Rightarrow F} & \bowtie^{\mathrm{At}} & \sum_{i}^{i} \subseteq \sum_{j} \cup \Theta_{j}, \text{ for every } i \neq j \\ X \supset Y \in \Sigma^{\supset} \text{ implies } X \in \{A_{1}, \dots, A_{n}\} \\ F \notin \Sigma^{\mathrm{At}} &= \bigcup_{1 \leq j \leq n} \sum_{j}^{\mathrm{At}} \\ \Theta^{\mathrm{At}} &= \bigcap_{1 \leq j \leq n} \sum_{j}^{\mathrm{At}} \\ \Sigma^{\supset} &= \bigcup_{1 \leq j \leq n} \sum_{j}^{\supset} \\ \Theta^{\supset} &= \{X \supset Y \in \bigcap_{1 \leq j \leq n} \Theta_{j}^{\supset} \mid X \in \{A_{1}, \dots, A_{n}\} \} \end{split}$$

The calculus $\mathbf{FRJ}(G)$

$$\begin{array}{c|c} \overline{\Gamma}^{\mathrm{At}} \setminus \{F\} \Rightarrow F & \mathrm{Ax} \Rightarrow & \hline & \ddots ; \overline{\Gamma}^{\mathrm{At}} \setminus \{F\}, \overline{\Gamma}^{\bigcirc} \rightarrow F & \mathrm{Ax} \rightarrow & F \in \mathcal{V} \cup \{\bot\} \\ \hline & \frac{\Gamma \Rightarrow A_k}{\Gamma \Rightarrow A_1 \land A_2} \land & \frac{\Sigma; \Theta \rightarrow A_k}{\Sigma; \Theta \rightarrow A_1 \land A_2} \land & k \in \{1, 2\} \\ & \frac{\Sigma_1 : \Theta_1 \rightarrow C_1}{\Sigma_1, \Sigma_2 : \Theta_1 \cap \Theta_2 \rightarrow C_1 \lor C_2} \lor & \frac{\Theta_2}{\Sigma_2} \subseteq \Sigma_1 \cup \\ \hline & \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \supset B} \supset \in & A \in \mathcal{C}/(\Gamma) & \frac{\Sigma; \Theta, \Lambda \rightarrow B}{\Sigma, \Lambda; \Theta \rightarrow A \supset B} \supset \in & \Theta \cap \Lambda = \emptyset \\ & \frac{\Gamma \Rightarrow B}{\cdot; \Theta \rightarrow A \supset B} \supset \notin & \Theta \subseteq \mathcal{C}/(\Gamma) \cap \overline{\Gamma} \\ & A \in \mathcal{C}/(\Gamma) \setminus \mathcal{C}/(\Theta) \end{array}$$

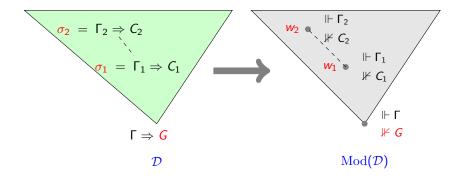
$$\begin{array}{c} \text{Let, for } 1 \leq j \leq n, \, \sigma_{j} &= \underbrace{\sum_{j}^{At}, \, \sum_{j}}_{\Sigma_{j}} : \underbrace{\Theta_{j}^{At}, \, \Theta_{j}^{\supset}}_{\Theta_{j}} \rightarrow A_{j} \text{ and } \Upsilon = \{A_{1}, \ldots, A_{n}\} \\ \hline \\ & \underbrace{\frac{\sigma_{1}}{\Sigma^{At}, \, \Theta^{At} \setminus \{F\}, \, \Sigma^{\supset}, \, \Theta^{\supset} \Rightarrow F}}_{\Sigma^{At}, \, \Theta^{At}, \, \Theta^{At} \setminus \{F\}, \, \Sigma^{\supset}, \, \Theta^{\supset} \Rightarrow F} \qquad \forall At \qquad \begin{array}{c} \Sigma_{i} \subseteq \Sigma_{j} \cup \Theta_{j}, \, \text{for every } i \neq j \\ Y \supset Z \in \Sigma^{\supset} \text{ implies } Y \in \Upsilon \\ \hline \\ & \underbrace{\frac{\sigma_{1}}{\Sigma^{At}, \, \Theta^{At}, \, \Sigma^{\supset}, \, \Theta^{\supset} \Rightarrow C_{1} \lor C_{2}}}_{\Sigma^{At}, \, \Theta^{At}, \, \Theta^{O} \Rightarrow C_{1} \lor C_{2}} \bowtie^{\vee} \begin{array}{c} \Sigma_{i} \subseteq \Sigma_{j} \cup \Theta_{j}, \, \text{for every } i \neq j \\ Y \supset Z \in \Sigma^{\supset} \text{ implies } Y \in \Upsilon \\ \{C_{1}, C_{2}\} \subseteq \Upsilon \end{array} \end{array}$$

The calculus $\mathbf{FRJ}(G)$

Let G be provable in $\mathbf{FRJ}(G)$.

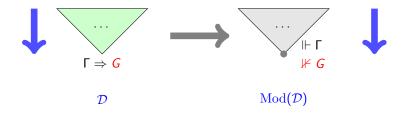
- There exists an **FRJ**(*G*)-derivation \mathcal{D} of $\Gamma \Rightarrow \mathbf{G}$
- From \mathcal{D} we extract a Kripke model $\operatorname{Mod}(\mathcal{D})$ closely related to \mathcal{D} . At the root of $\operatorname{Mod}(\mathcal{D})$ all the formulas in Γ are forced, whereas *G* is not forced.

Accordingly, $Mod(\mathcal{D})$ is a countermodel for G.



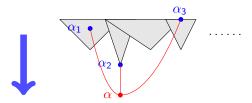
In forward-proof search, $\ensuremath{\mathcal{D}}$ is built top-down, starting from axioms.

This corresponds to a top-down construction strategy of the countermodel $Mod(\mathcal{D})$, starting from the top-worlds towards the root.



Join rules correspond to a step in *downward* countermodel construction:

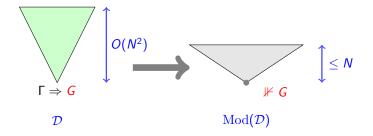
* we select $n \ge 1$ worlds $\alpha_1, \ldots, \alpha_n$ and we add a new world α having as immediate successors the chosen worlds.



 α : new world having the chosen worlds α_1 , α_2 , α_3 as immediate successors.

The calculus FRJ(G)

- Let \mathcal{D} be an **FRJ**(*G*)-derivation of *G* and *N* the size of *G* (= number of symbols occurring in *G*). Then:
 - height(\mathcal{D}) = $O(N^2)$
 - height(Mod(\mathcal{D})) $\leq N$



The naive proof-search procedure is not efficient:

- Join rules must be applied to every combination of $n \ge 1$ sequents.
- Too many redundant sequents are generated.

To reduce redundancies:

- * We introduce a *subsumption* relation between sequents.
- We tweak the proof-search procedure so that DB never contains pairs of sequents subsuming each other *(subsumption check)*.
 Indeed, if both σ₁ and σ₂ belong to DB and σ₁ subsumes σ₂, then

 σ_2 is redundant and can be safely removed.

We have implemented frj, a Java prototype of our proof-search procedure based on JTabWb (a Java framework for developing provers)

http://github.com/ferram/jtabwb_provers/

Our proof/countermodel-search procedure is dual to the standard bottom-up methods, which mimic the backward application of rules.

This different approach has a significant impact on the outcome:

• Backward procedures

Countermodels are always trees, which might contain many redundancies (the same sequent might occur many times in the tree).

• Forward procedures

Prone to re-use sequents as much as possible and to not generate redundant ones (the DB does not contain duplications) Thus the obtained countermodels are in general very concise. $G = (((\neg p \supset p) \supset (\neg p \lor p)) \supset (\neg p \lor p)) \supset ((\neg p \supset p) \supset ((\neg p \supset p)))$

$$G = S \supset ((\neg \neg p \supset p) \lor \neg \neg p)$$
$$S = H \supset (\neg \neg p \lor \neg p) \qquad H = (\neg \neg p \supset p) \supset (\neg p \lor p)$$

The goal G is an instance of Anti-Scott principle (not valid in IPL). To prove the goal, frj runs 10 iterations of the main loop.

Legenda

sub(n): sequent subsumed by sequent n (backward subsumption)
(n): sequent needed to prove the goal
(n): sequent corresponding to a world of the countermodel

(*n*): sequent corresponding to a world of the countermodel

• Iteration 0 (axioms) sub(15) (Ø) Ax_{\Rightarrow} $p \Rightarrow \bot$ sub(10) (Y) Ax_{\Rightarrow} $\vdots \Rightarrow p$ (2) Ax_{\rightarrow} $\cdot; p, \neg p, \neg \neg p, \neg p \supset p, S \rightarrow \bot$ (3) Ax_{\rightarrow} $\cdot; \neg p, \neg \neg p, \neg p, S \rightarrow p$

• Iteration 1

$$\begin{aligned} sub(19) \quad (\mathcal{A}) & \supset_{\in} (0) \quad p \Rightarrow p \\ sub(20) \quad (\mathcal{B}) & \supset_{\mathcal{G}} (0) \quad \vdots & \neg_{\mathcal{P}} \rightarrow p \\ & (6) & \supset_{\in} (2) \quad p; \neg p, \neg \neg p, \neg p \supset p, S \rightarrow \neg p \\ & (7) & \supset_{\in} (2) \quad \neg p; p, \neg \neg p, \neg p \supset p, S \rightarrow \neg \neg p \\ & (8) & \supset_{\in} (3) \quad \neg \neg p; \neg p, \neg p \supset p, S \rightarrow \neg \neg p \supset p \\ sub(17) \quad (\mathcal{P}) & \bowtie^{\operatorname{At}} (3) \quad \neg p \Rightarrow f \\ \\ sub(18) \quad (10) & \bowtie^{\operatorname{At}} (3) \quad \neg p \Rightarrow p \end{aligned}$$

• Iteration 2

$$\begin{aligned} sub(24) & (14) & \lor(5)(3) & \vdots & \vdots & \neg p \lor p \lor p \\ (12) & \lor(8)(7) & \neg p, \neg \gamma p \supset p, S \to (\neg \gamma p \supset p) \lor \neg p \\ sub(21) & (13) & \supset_{\in} (9) & \neg p \Rightarrow \neg p \\ sub(22) & (14) & \supset_{\notin} (9) & \vdots & S \to \neg p \\ (15) & \bowtie^{At} (6) & p, \neg \gamma p \Rightarrow \bot \\ sub(26) & (16) & \bowtie^{\vee} (3)(5) & \vdots \Rightarrow p \lor p \\ (17) & \bowtie^{At} (3)(7) & \neg p, \neg \gamma p \supset p \Rightarrow \bot \\ (18) & \bowtie^{At} (3)(7) & \neg p, \neg \gamma p \supset p \Rightarrow p \end{aligned}$$

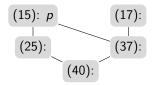
• Iteration 3			
	(19)	⊃∈ (15)	$p, \neg \neg p \Rightarrow \neg p$
	(20)	⊃ _∉ (15)	$\cdot; \neg \neg p, \neg \neg p \supset p, S \rightarrow \neg p$
	(21)	⊃ _∈ (17)	$\neg p, \neg \neg p \supset p \Rightarrow \neg \neg p$
	(22)	⊃∉ (17)	$\cdot; \neg \neg p \supset p, S \rightarrow \neg \neg p$
<i>sub</i> (32)	(23)	\supset_{\in} (11)	$\overrightarrow{p} \xrightarrow{\rightarrow} \overrightarrow{p} \xrightarrow{\leftarrow} \overrightarrow{q} \xrightarrow{\leftarrow} \overrightarrow{H}$
• Iteration 4			
(24)	<mark>(24)</mark> ∨(20)(3)		\cdot ; $\neg \neg p$, $\neg \neg p \supset p$, $S \rightarrow \neg p \lor p$
(25)	\bowtie^{At}	(20)	$\neg \neg p \Rightarrow p$
(26)	\bowtie^{\vee}	(3)(20)	$\neg \neg p \Rightarrow \neg p \lor p$
sub(37) (27)	\bowtie^{\vee}	(3)(20)(22)	$q \vee q \leftarrow \Leftarrow q \subset q \leftarrow r$
• Iteration 5			
	(28)	⊃∈ (25)	$\neg \neg p \Rightarrow \neg \neg p \supset p$
	(29)	⊃ _∉ (25)	$\cdot ; S \to \neg \neg p \supset p$
<i>sub</i> (38)	(30)	⊃∈ (27)	T=====H
<i>sub</i> (39)	(31)	⊃ _∉ (27)	::
	(32)	⊃∈ (24)	$\neg \neg p \supset p; \neg \neg p, S \rightarrow H$

• Iteration 6

 $\cdot ; S \rightarrow (\neg \neg p \supset p) \lor \neg \neg p$ (33) ∨(29)(22) $\cdot \Rightarrow (\neg \neg \neg \neg \neg \neg \neg p)$ sub(40) (34) \bowtie^{\vee} (22)(29) (35) $\bowtie^{\text{At}}(22)(32)$ $\neg \neg p \supset p, S \Rightarrow \bot$ (36) $\bowtie^{\text{At}}(22)(32)$ $\neg \neg p \supset p, S \Rightarrow p$ (37) \bowtie^{\vee} (3)(20)(22)(32) $\neg \neg p \supset p, S \Rightarrow \neg p \lor p$ Iteration 7 $(38) \supset_{\in} (37) \neg \neg p \supset p, S \Rightarrow H$ $(39) \supset_{\mathscr{C}} (37) \quad \cdot; S \to H$ Iteration 8 (40) \bowtie^{\vee} (22)(29)(39) $S \Rightarrow (\neg \neg p \supset p) \lor \neg \neg p$

• Iteration 9 (Goal)

$$(41) \supset_{\in} (40) \qquad S \Rightarrow G$$



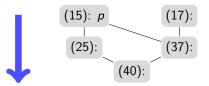
$$\begin{array}{ll} (15) & p, \neg \neg p \Rightarrow \bot & (17) & \neg p, \neg \neg p \supset p \Rightarrow \bot \\ (25) & \neg \neg p \Rightarrow p & (37) & \neg \neg p \supset p \Rightarrow \neg p \lor p \\ (40) & S \Rightarrow (\neg \neg p \supset p) \lor \neg \neg p \end{array}$$

 $G = S \supset ((\neg \neg p \supset p) \lor \neg p) \quad S = H \supset (\neg \neg p \lor \neg p) \quad H = (\neg \neg p \supset p) \supset (\neg p \lor p)$

• At the end of the computation DB contains 38 sequents:

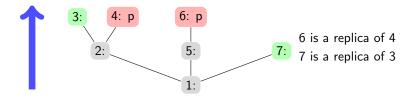
 $\sqrt{15}$ sequents have been deleted by (backward) subsumption

 $\sqrt{16}$ sequents are needed to prove the goal



The obtained model is minimal in the number of worlds and is *not a tree*, hence it cannot be obtained by standard bottom-up methods.

For instance, using lsj, a prover based on the calculus presented in [Ferrari et. al., JAR 2013] we get the following tree-shaped countermodel, which has *minimal height*, but contains some redundancies.



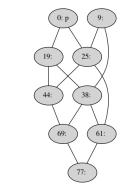
Example: Nishimura formulas

We get very concise models with one-variable Nishimura formulas:

$$N_1 = p \qquad N_{2n+3} = N_{2n+1} \lor N_{2n+2} N_2 = \neg p \qquad N_{2n+4} = N_{2n+3} \supset N_{2n+1}$$

N₉ : equivalent to Anti-Scott principle

Indeed, frj yields the standard "tower-like" minimum countermodels.



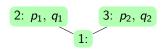
Countermodel for N₁₇

On countermodels

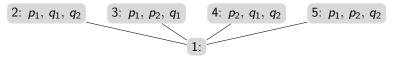
- We can tweak the proof-search strategy so to get countermodels having minimal height
- However, the countermodels might not be minimal. For instance:

$$G = (p_1 \supset p_2) \lor (p_2 \supset p_1) \lor (q_1 \supset q_2) \lor (q_2 \supset q_1)$$

Minimal Countermodel:



Countermodel \mathcal{K} generated by frj:



- $\bullet \ \mathcal{K}$ has the same height of the minimal countermodel
- Final worlds of \mathcal{K} have "maximal" forcing (only one prop. var. is not forced), thus we cannot simulate the minimal countermodel

Whenever proof-search in FRJ(G) fails, we get a *saturated database* DB for G, namely:

If a sequent σ is provable in FRJ(G), there exists σ' in DB such that σ' subsumes σ.

We exploit DB to build a sequent derivation of G, so to constructively ascertain the validity of G.

To this aim, we introduce the sequent calculus $\mathbf{Gbu}(G)$, a "focused" variant of the well-known sequent calculus **G3i**.

- $\sqrt{\mathbf{Gbu}(G)}$ can be viewed as the dual calculus of $\mathbf{FRJ}(G)$
- $\sqrt{\mathbf{Gbu}(G)}$ is closely related with the calculus presented in

M. Ferrari, C. Fiorentini, and G. Fiorino. A terminating evaluation-driven variant of G3i. TABLEAUX 2013.

On saturated database

• G3i

$$\frac{\overline{\Gamma, p \vdash p} \operatorname{Ax}_{1} \qquad \overline{\bot, \Gamma \vdash C} \operatorname{Ax}_{2}}{\frac{A, B, \Gamma \vdash C}{A \land B, \Gamma \vdash C} L \land \qquad \frac{\Gamma \vdash A}{\Gamma \vdash A \land B} R \land}$$

$$\frac{\overline{\Gamma, A \vdash C} \qquad \overline{\Gamma, B \vdash C}}{A \lor B, \Gamma \vdash C} L \lor \qquad \frac{\Gamma \vdash A_{k}}{\Gamma \vdash A_{1} \lor A_{2}} R \lor \qquad k = 0, 1$$

$$\frac{A \supset B, \Gamma \vdash A}{A \supset B, \Gamma \vdash C} L \supset \qquad \frac{A, \Gamma \vdash B}{\Gamma \vdash A \supset B} R \supset$$

Gbu(G) = G3i + labelled sequents (two kinds of sequents)
 + side conditions on some rule applications

In G3i, bottom-up proof search is not terminating.
 Indeed, G3i allows for unbounded applications of rule L ⊃ of this kind:

$$\begin{array}{c}
\vdots \\
A \supset B, \Gamma \vdash C \\
\hline L \supset \\
\hline A \supset B, \Gamma \vdash C \\
\hline L \supset \\
\hline \end{array}$$

 In Gbu(G) the number of applications of rule L ⊃ is bounded by the size of the root sequent.

Hence, bottom-up proof-search in $\mathbf{Gbu}(G)$ is terminating

On saturated database

In **Gbu**(G) bottom-up proof-search in general requires backtracking:

$$\frac{\dots}{A_1 \supset B_1, \dots, A_n \supset B_n \vdash p} \ L \supset ??$$

- We have to choose the main formula $A_j \supset B_j$ of $L \supset$ application.
- If we take the wrong way, we have to backtrack and try another choice.

On saturated database

Example

$$\frac{\dots}{p_1, p_1 \supset p_2, p_3 \supset p_4 \vdash p_2} L \supset ??$$

We can choose $p_1 \supset p_2$ or $p_3 \supset p_4$.

 If we choose p₃ ⊃ p₄, proof search fails since the left-most premise is not provable:

 $\frac{\mathsf{UNPROVABLE}}{p_1, \ p_1 \supset p_2, \ p_3 \supset p_4 \vdash p_3} \quad p_1, \ p_1 \supset p_2, \ p_4 \vdash p_2}{p_1, \ p_1 \supset p_2, \ p_3 \supset p_4 \vdash p_2} \ L \supset$

• To build a derivation, we have to backtrack and try the other way

$$\begin{array}{c|c}\hline p_1, \ p_1 \supset p_2, \ p_3 \supset p_4 \vdash p_1 \end{array} & Ax & \hline p_1, \ p_2, \ p_3 \supset p_4 \vdash p_2 \\ \hline p_1, \ p_1 \supset p_2, \ p_3 \supset p_4 \vdash p_2 \end{array} & Ax \\ L \supset \end{array}$$

However, we can exploit the DB obtained at the end of proof-search to avoid backtracking and choose the right path.

To sum up:

- If G is valid in IPL, forward proof-search in $\mathbf{FRJ}(G)$ fails.
- At the end of proof-search we obtain a saturated database DB.
- We can exploit DB to deterministically construct a sequent derivation of G in **Gbu**(G):

whenever a backtrack point occurs, ask DB the right way.

Thus a saturated DB can be viewed as a proof-certificate of the validity of G.

A dual remark has been issued in

S. McLaughlin and F. Pfenning. Imogen: Focusing the polarized inverse method for intuitionistic propositional logic. LPAR 2008.

The authors introduce a forward (focused) sequent calculus for IPL.

If proof-search for a goal G fails, one gets a saturated database DB.

The authors claim that such a saturated DB "may be considered a kind of countermodel for the goal sequent".

But so far this issue has not been investigated.

- **FRJ**(*G*) is a forward calculus to derive the unprovability of a goal formula *G* in IPL:
 - \checkmark If G is provable in **FRJ**(G), from the derivation we can immediately extract a countermodel for G;
 - $\sqrt{}$ otherwise, we get a saturated DB which can be exploited to get a sequent-style derivation of G in IPL.

Thus a saturated DB can be viewed as a proof-certificate of the validity of ${\cal G}$ in ${\rm IPL}.$

- Advantages of forward vs. backward reasoning:
 - $\checkmark\,$ derivations are more concise since sequents are reused and not duplicated (subsumption tests)
 - \checkmark countermodels are in general compact and have minimal height